• Title/Summary/Keyword: Gate Length

Search Result 567, Processing Time 0.022 seconds

Numerical analysis of reaction forces in blast resistant gates

  • Al-Rifaie, Hasan;Sumelka, Wojciech
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.347-359
    • /
    • 2017
  • Blast resistant gates are required to be lightweight and able to mitigate extreme loading effect. This may be achieved through innovative design of a gate and its supporting frame. The first is well covered in literature while the latter is often overlooked. The design of supporting frame depends mainly on the boundary conditions and corresponding reaction forces. The later states the novelty and the aim of this paper, namely, the analysis of reaction forces in supporting structure of rectangular steel gates subjected to "far-field explosions". Flat steel plate was used as simplified gate structure, since the focus was on reaction forces rather than behaviour of gate itself. The analyses include both static and dynamic cases using analytical and numerical methods to emphasize the difference between both approaches, and provide some practical hints for engineers. The comprehensive study of reaction forces presented here, cover four different boundary conditions and three length to width ratios. Moreover, the effect of explosive charge and stand-off distance on reaction forces was also covered. The analyses presented can be used for a future design of a possible "blast absorbing supporting frame" which will increase the absorbing properties of the gate. This in return, may lead to lighter and more operational blast resistant gates.

Compact Current Model of Single-Gate/Double-Gate Tunneling Field-Effect Transistors

  • Yu, Yun Seop;Najam, Faraz
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2014-2020
    • /
    • 2017
  • A compact current model applicable to both single-gate (SG) and double-gate (DG) tunneling field-effect transistors (TFETs) is presented. The model is based on Kane's band-to-band tunneling (BTBT) model. In this model, the well-known and previously-reported quasi-2-D solution of Poisson's equation is used for the surface potential and length of the tunneling path in the tunneling region. An analytical tunneling current expression is derived from expressions of derivatives of local electric field and surface potential with respect to tunneling direction. The previously reported correction factor with three fitting parameters, compensating for superlinear onset and saturation current with drain voltage, is used. Simulation results of the proposed TFET model are compared with those from a technology computer-aided-design (TCAD) simulator, and good agreement in all operational bias is demonstrated. The proposed SG/DG-TFET model is developed with Verilog-A for circuit simulation. A TFET inverter is simulated with the Verilog-A SG/DG-TFET model in the circuit simulator; the model exhibits typical inverter characteristics, thereby confirming its effectiveness.

Fabrication of MFISFET Compatible with CMOS Process Using $SrBi_2Ta_2O_9$(SBT) Materials

  • You, In-Kyu;Lee, Won-Jae;Yang, Il-Suk;Yu, Byoung-Gon;Cho, Kyoung-Ik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.1
    • /
    • pp.40-44
    • /
    • 2000
  • Metal-ferroelectric-insulator-semoiconductor field effect transistor (MFISFETs) were fabricated using CMOS processes. The Pt/SBT/NO combined layers were etched for forming a conformal gate by using Ti/Cr metal masks and a two step etching method, By the method, we were able to fabricate a small-sized gate with the dimension of $16/4{\mu}textrm{m}$ in the width/length of gate. It has been chosen the non-self aligned source and drain implantation process, We have deposited inter-layer dielectrics(ILD) by low pressure chemical vapor deposition(LPCVD) at $380^{circ}C$ after etching the gate structure and the threshold voltage of p-channel MFISFETs were about 1.0 and -2.1V, respectively. It was also observed that the current difference between the $I_{ON}$(on current) and $I_{OFF}$(off current) that is very important in sensing margin, is more that 100 times in $I_{D}-V_{G}$ hysteresis curve.

  • PDF

An Analytical Model for Deriving The Threshold Voltage Expression of A Short-gate Length SOI MESFET (Short-gate SOI MESFET의 문턱 전압 표현 식 도출을 위한 해석적 모델)

  • Kal, Jin-Ha;Suh, Chung-Ha
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.9-16
    • /
    • 2008
  • In this paper, a simple analytical model for deriving the threshold voltage of a short-gate SOI MESFET is suggested. Using the iteration method, the Poisson equation in the fully depleted silicon channel and the Laplace equation in the buried oxide region are solved two-dimensionally, Obtained potential distributions in each region are expressed in terms of fifth-order of $\chi$, where $\chi$ denotes the coordinate perpendicular to the silicon channel direction. From them, the bottom channel potential is used to describe the threshold voltage in a closed-form. Simulation results show the dependencies of the threshold voltage on the various device geometry parameters and applied bias voltages.

A 3.3V, 68% power added efficieny, GaAs power MESFET for mobile digital hand-held phone (3.3V 동작 68% 효율, 디지털 휴대전화기용 고효율 GaAs MESFET 전력소자 특성)

  • 이종남;김해천;문재경;이재진;박형무
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.6
    • /
    • pp.41-50
    • /
    • 1995
  • A state-of-the-arts GaAs power metal semiconductor field effect transistor (MESFET) for 3.3V operation digital hand-held phone at 900 MHz has been developed for the first time, The FET was fabricated using a low-high doped structures grown by molecular beam epitaxy (MBE). The fabricated MESFETs with a gate width of 16 mm and a gate length of 0.8 .mu.m shows a saturated drain current (Idss) of 4.2A and a transconductance (Gm) of around 1700mS at a gate bias of -2.1V, corresponding to 10% Idss. The gate-to-drain breakdown voltage is measured to be 28 V. The rf characteristics of the MESFET tested at a drain bias of 3.3 V and a frequencyof 900 MHz are the output power of 32.3 dBm, the power added efficiency of 68%, and the third-ordr intercept point of 49.5 dBm. The power MESFET developed in this work is expected to be useful as a power amplifying device for digital hand-held phone because the high linear gain can deliver a high power added efficiency in the linear operation region of output power and the high third-order intercept point can reduce the third-order inter modulation.

  • PDF

Parameter dependent conduction path for nano structure double gate MOSFET (나노구조 이중게이트 MOSFET에서 전도중심의 파라미터 의존성)

  • Jeong Hak-Gi;Lee Jae-Hyeong;Lee Jong-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.861-864
    • /
    • 2006
  • In this paper conduction phenomena have been considered for nano structure double gate MOSFET, using the analytical model. The Possion equation is used to obtain the analytical model. The conduction mechanisms to have an influence on current conduction are thermionic emission and tunneling current, and subthreshold swings of this paper is compared with those of two dimensional simulation to verify this model. The deviation of current path and the influence of current path on subthreshold swing have been considered according to the dimensional parameters of double gate MOSFET, i.e. gate length, gateoxide thickness, channel thickness. The optimum channel doping concentration is determined as the deviation of conduction path is considered according to channel doping concentration.

  • PDF

Fabrication of Thin Film Transistor Using Ferroelectrics

  • Hur, Chang-Wu;Kim, Jung-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.2
    • /
    • pp.93-96
    • /
    • 2004
  • The a-Si:H TFT using ferroelectric of $SrTiO_3$ as a gate insulator is fabricated on glass. Dielectric characteristics of ferroelectric are superior to $SiO_2$ and $Si_{3}N_{4}$. Ferroelectric increases on-current, decreases threshold voltage of TFT and also improves breakdown characteristics. The a-SiN:H has optical band gap of 2.61 eV, retractive index of 1.8∼2.0 and resistivity of $10^{13}$~$10^{15}$ $\Omega$cm, respectively. Insulating characteristics of ferroelectrics are excellent because dielectric constant of ferroelectric is about 60∼100 and breakdown strength is over 1MV/cm. TFT using ferroelectric has channel length of 8∼20 $\mu\textrm{m}$ and channel width of 80∼200 $\mu\textrm{m}$. And it shows that drain current is 3.4$\mu\textrm{A}$ at 20 gate voltage, $I_{on}$/$I_{off}$ is a ratio of $10^5$~$10^8$ and $V_{th}$ is 4∼5 volts, respectively. In the case of TFT without ferroelectric, it indicates that the drain current is 1.5 $\mu\textrm{A}$ at 20 gate voltage and $V_{th}$ is 5∼6 volts. With the improvement of the ferroelectric thin film properties, the performance of TFT using this ferroelectric has advanced as a gate insulator fabrication technology is realized.

The Kunjung-mun Sangryangmun of Kyunbok-koong Palace (경복궁(景福宮) 근정문(勤政門) 상량문(上樑門))

  • Seo, byung-pae
    • Korean Journal of Heritage: History & Science
    • /
    • v.34
    • /
    • pp.196-209
    • /
    • 2001
  • Kunjung-mun Gate the only existing multi-level palace gate from the Chosun Dynasty, is the main fate of Kungjung-jun, the central building of Kyungbok-koong Palace. Sangryangmun(a written record of the construction of the ridge beam) of Kunjung-mun Gate was discovered in a hole under its main beam during the renovation project on September 19th, 2000. At the time of discovery, Sangryangmun was found in its original state as a rolled up scroll. On a clould-patterned, red silk cloth, 78 cm in width and 1200 cm in length, each of all 92 lines of the Kunjung-mun Sangryangmun is comprised of either 7 or 11 brush-written, ornamental "Seal" characters. With an exception of its discoloration, the material is considered well preserved. After its discovery, the National Institute of Cultural Properties stored the document in an airtight container for a permanent preservation. In accordance to the Royal Command at the time, the Kunjung-mun Sangryangmun was composed by Kim Byungi, then written by Lee Donsang on January 19th 1867. This document records the meaning and the process of the repair effort of Kunjung-mun Gate includes the wish for peace and longevity of the Chosun Kingdom and its people.

Extracting the Effective Channel Length of MOSFET by Capacitance - Voltage Method. (Capacitance - Voltage 방법을 이용한 MOSFET의 유효 채널 길이 추출)

  • 김용구;지희환;박성형;이희덕
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.679-682
    • /
    • 2003
  • Improvement in MOS fabrication technology have led to high-density high-performance integrated circuits with MOSFET channel lengths in the sub-micron range. For devices of the size, transistor characteristics become highly sensitive to effective channel length. We propose a new approach to extract the effective channel length of MOSFET by Capacitance-Voltage (C-V) method. Gate-to-Source, Drain capacitance ( $C_{gsd}$) are measured and the effective channel length can be extracted. In addition, compared to l/$\beta$ method and Terada method, which has been point out that it fails to extract the accurate effective channel length of the devices, we prove that our approach still works well for the devices with down to sub-micron regime.e.

  • PDF

A Study on the Extraction of Mobility Reduction Parameters in Short Channel n-MOSFETs at Room Temperature (상온에서 짧은 채널 n-MOSFET의 이동도 감쇠 변수 추추에 관한 연구)

  • 이명복;이정일;강광남
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.9
    • /
    • pp.1375-1380
    • /
    • 1989
  • Mobility reduction parameters are extracted using a method based on the exploitatiion of Id-Vg and Gm-Vg characteristics of short channel n-MOSFETs in strong inversion region at room temperature. It is found that the reduction of the maximum field effect mobility, \ulcornerFE,max, with the channel length is due to i) the difference between the threshold voltage and the gate voltage which corresponds to the maximum transconductance, and ii) the channel length dependence of the mobility attenuation coefficient, \ulcorner The low field mobility, \ulcorner, is found to be independent of the channel length down to 0.25 \ulcorner ofeffective channel length. Also, the channel length reduction, -I, the mobility attenuation coefficient, \ulcorner the threshold voltage, Vt, and the source-drain resistance, Rsd, are determined from the Id-Vg and -gm-Vg characteristics n-MOSFETs.

  • PDF