• Title/Summary/Keyword: Gate Insulator Thin Film

Search Result 174, Processing Time 0.023 seconds

Annealing Effects of Gate-insulator on the Properties of Zinc Tin Oxide Transparent Thin Film Transistors (게이트절연막의 열처리가 Zinc Tin Oxide 투명 박막트랜지스터의 특성에 미치는 영향)

  • Ma, Tae Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.365-370
    • /
    • 2015
  • Zinc tin oxide transparent thin film transistors (ZTO TTFTs) were fabricated on oxidized $n^+$ Si wafers. The thickness of ~30 nm $Al_2O_3$ films were deposited on the oxidized Si wafers by atomic layer deposition, which acted as the gate insulators of ZTO TTFTs. The $Al_2O_3$ films were rapid-annealed at $400^{\circ}C$, $600^{\circ}C$, $800^{\circ}C$, and $1,000^{\circ}C$, respectively. Active layers of ZTO films were deposited on the $Al_2O_3/SiO_2$ coated $n^+$ Si wafers by rf magnetron sputtering. Mobility and threshold voltage were measured as a function of the rapid-annealing temperature. X-ray photoelectron spectroscopy (XPS) were carried out to observe the chemical bindings of $Al_2O_3$ films. The annealing effects of gate-insulator on the properties of TTFTs were analyzed based on the results of XPS.

A Flexible Amorphous $Bi_5Nb_3O_{15}$ Film for the Gate Insulator of the Low-Voltage Operating Pentacene Thin-Film Transistor Fabricated at Room Temperature

  • Kim, Jin-Seong;Cho, Kyung-Hoon;Seong, Tae-Geun;Choi, Joo-Young;Nahm, Sahn
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.17-17
    • /
    • 2010
  • The amorphous $Bi_5Nb_3O_{15}$ film grown at room temperature under an oxygen-plasma sputtering ambient (BNRT-$O_2$ film) has a hydrophobic surface with a surface energy of $35.6\;mJm^{-2}$, which is close to that of the orthorhombic pentacene ($38\;mJm^{-2}$, resulting in the formation of a good pentacene layer without the introduction of an additional polymer layer. This film was very flexible, maintaining a high capacitance of $145\;nFcm^{-2}$ during and after 10s bending cycles with a small curvature radius of 7.5 mm. This film was optically transparent. Furthermore, the flexible, pentacene-based, organic thin-film transistors (OTFTs) fabricated on the polyethersulphone substrate at room temperature using a BNRT-$O_2$ film as a gate insulator exhibited a promising device performance with a high field effect mobility of $0.5\;cm^2V^{-1}s^{-1}$, an on/off current modulation of $10^5$ and a small subthreshold slope of $0.2\;Vdecade^{-1}$ under a low operating voltage of -5 V. This device also maintained a high carrier mobility of $0.45\;cm^2V^{-1}s^{-1}$ during the bending with a small curvature radius of 9 mm. Therefore, the BNRT-$O_2$ film is considered a promising material for the gate insulator of the flexible, pentacene-based OTFT.

  • PDF

Etching Property of the TaN Thin Film using an Inductively Coupled Plasma (유도결합플라즈마를 이용한 TaN 박막의 식각 특성)

  • Um, Doo-Seung;Woo, Jong-Chang;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.104-104
    • /
    • 2009
  • Critical dimensions has rapidly shrunk to increase the degree of integration and to reduce the power consumption. However, it is accompanied with several problems like direct tunneling through the gate insulator layer and the low conductivity characteristic of poly-silicon. To cover these faults, the study of new materials is urgently needed. Recently, high dielectric materials like $Al_2O_3$, $ZrO_2$ and $HfO_2$ are being studied for equivalent oxide thickness (EOT). However, poly-silicon gate is not compatible with high-k materials for gate-insulator. To integrate high-k gate dielectric materials in nano-scale devices, metal gate electrodes are expected to be used in the future. Currently, metal gate electrode materials like TiN, TaN, and WN are being widely studied for next-generation nano-scale devices. The TaN gate electrode for metal/high-k gate stack is compatible with high-k materials. According to this trend, the study about dry etching technology of the TaN film is needed. In this study, we investigated the etch mechanism of the TaN thin film in an inductively coupled plasma (ICP) system with $O_2/BCl_3/Ar$ gas chemistry. The etch rates and selectivities of TaN thin films were investigated in terms of the gas mixing ratio, the RF power, the DC-bias voltage, and the process pressure. The characteristics of the plasma were estimated using optical emission spectroscopy (OES). The surface reactions after etching were investigated using X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES).

  • PDF

Comparative Analysis on Positive Bias Stress-Induced Instability under High VGS/Low VDS and Low VGS/High VDS in Amorphous InGaZnO Thin-Film Transistors

  • Kang, Hara;Jang, Jun Tae;Kim, Jonghwa;Choi, Sung-Jin;Kim, Dong Myong;Kim, Dae Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.519-525
    • /
    • 2015
  • Positive bias stress-induced instability in amorphous indium-gallium-zinc-oxide (a-IGZO) bottom-gate thin-film transistors (TFTs) was investigated under high $V_{GS}$/low $V_{DS}$ and low $V_{GS}$/high $V_{DS}$ stress conditions through incorporating a forward/reverse $V_{GS}$ sweep and a low/high $V_{DS}$ read-out conditions. Our results showed that the electron trapping into the gate insulator dominantly occurs when high $V_{GS}$/low $V_{DS}$ stress is applied. On the other hand, when low $V_{GS}$/high $V_{DS}$ stress is applied, it was found that holes are uniformly trapped into the etch stopper and electrons are locally trapped into the gate insulator simultaneously. During a recovery after the high $V_{GS}$/low $V_{DS}$ stress, the trapped electrons were detrapped from the gate insulator. In the case of recovery after the low $V_{GS}$/high $V_{DS}$ stress, it was observed that the electrons in the gate insulator diffuse to a direction toward the source electrode and the holes were detrapped to out of the etch stopper. Also, we found that the potential profile in the a-IGZO bottom-gate TFT becomes complicatedly modulated during the positive $V_{GS}/V_{DS}$ stress and the recovery causing various threshold voltages and subthreshold swings under various read-out conditions, and this modulation needs to be fully considered in the design of oxide TFT-based active matrix organic light emitting diode display backplane.

High Performance p-type SnO thin-film Transistor with SiOx Gate Insulator Deposited by Low-Temperature PECVD Method

  • U, Myeonghun;Han, Young-Joon;Song, Sang-Hun;Cho, In-Tak;Lee, Jong-Ho;Kwon, Hyuck-In
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.666-672
    • /
    • 2014
  • We have investigated the gate insulator effects on the electrical performance of p-type tin monoxide (SnO) thin-film transistors (TFTs). Various SnO TFTs are fabricated with different gate insulators of a thermal $SiO_2$, a plasma-enhanced chemical vapor deposition (PECVD) $SiO_x$, a $150^{\circ}C$-deposited PEVCD $SiO_x$, and a $300^{\circ}C$-deposited PECVD $SiO_x$. Among the devices, the one with the $150^{\circ}C$-deposited PEVCD $SiO_x$ exhibits the best electrical performance including a high field-effect mobility ($=4.86cm^2/Vs$), a small subthreshold swing (=0.7 V/decade), and a turn-on voltage around 0 (V). Based on the X-ray diffraction data and the localized-trap-states model, the reduced carrier concentration and the increased carrier mobility due to the small grain size of the SnO thin-film are considered as possible mechanisms, resulting in its high electrical performance.

Study of Low Temperature Solution-Processed Al2O3 Gate Insulator by DUV and Thermal Hybrid Treatment (DUV와 열의 하이브리드 저온 용액공정에 의해 형성된 Al2O3 게이트 절연막 연구)

  • Jang, Hyun Gyu;Kim, Won Keun;Oh, Min Suk;Kwon, Soon-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.286-290
    • /
    • 2020
  • The formation of inorganic thin films in low-temperature solution processes is necessary for a wide range of commercial applications of organic electronic devices. Aluminum oxide thin films can be utilized as barrier films that prevent the deterioration of an electronic device due to moisture and oxygen in the air. In addition, they can be used as the gate insulating layers of a thin film transistor. In this study, aluminum oxide thin film were formed using two methods simultaneously, a thermal process and the DUV process, and the properties of the thin films were compared. The result of converting aluminum nitrate hydrate to aluminum oxide through a hybrid process using a thermal treatment and DUV was confirmed by XPS measurements. A film-based a-IGZO TFT was fabricated using the formed inorganic thin film as a gate insulating film to confirm its properties.

Preparation and Properties of PVP (poly-4-vinylphenol) Gate Insulation Film For Organic Thin Film Transistor (유기박막 트랜지스터용 PVP (poly-4-vinylphenol) 게이트 절연막의 제작과 특성)

  • Baek, In-Jae;Yoo, Jae-Hyouk;Lim, Hun-Seung;Chang, Ho-Jung;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.359-363
    • /
    • 2005
  • The organic insulation devices with MIM (metal-insulator-metal) structures as PVP gate insulation films were prepared for the application of organic thin film transistors (OTFT). The co-polymer organic insulation films were synthesized by using PVP(poly-4-vinylphenol) as solute and PGMEA (propylene glycol monomethyl ether acetate) as solvent. The cross-linked PVP insulation films were also prepared by addition of poly (melamine-co-formaldehyde) as thermal hardener. The leakage current of the cross-linked PVP films was found to be about 300 pA with low current noise. and showed better property in electrical properties as compared with the co-polymer PVP insulation films. In addition, cross-linked PVP insulation films showed better surface morphology (roughness), showing about 0.11${\~}$0.18 nF in capacitance for all PVP film samples.

  • PDF

Organic Thin Film-Transistor using Pentacene

  • Kim, Seong-Hyun;Hwang, Do-Hoon;Park, Heuk;Chu, Hye-Young;Lee, Jeong-Ik;Do, Lee-Mi;Zyung, Tae-Hyoung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.215-216
    • /
    • 2000
  • We fabricated the thin-film transistors using organic semiconductor, pentacene, on $SiN_x$, gate insulator. X-ray diffraction experiments were performed for the sample after heat-treatments at higher temperatures. We confirmed that we obtained "thin-film phase" from the condition used here. From the electrical measurements, we also confirmed that no charges are accumulated at the interface between organic and insulating layer, and FET characteristics of the organic FET using pentacene was discussed.

  • PDF

Fabrication of Pentacene Thin Film Transistors and Their Electrical Characteristics (Pentacene 박막트랜지스터의 제조와 전기적 특성)

  • 김대엽;최종선;강도열;신동명;김영환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.598-601
    • /
    • 1999
  • There is currently considerable interest in the applications of conjugated polymers, oligomers and small molecules for thin-film electronic devices. Organic materials have potential advantages to be utilized as semiconductors in field effect transistor and light emitting didoes. In this study, Pentacene thin film transistors(TFTs) were fabricated on glass substrate. Aluminum and Gold wei\ulcorner used fur the gate and source/drain electrodes. Silicon dioxde was deposited as a gate insulator by PECVD and patterned by R.I.E. The semiconductor layer of pentacene was thermally evaporated in vaccum at a pressure of about 10$^{-8}$ Torr and a deposition rate 0.3$\AA$/sec. The fabricated devices exhibited the field-effect mobility as large as 0.07cm$^2$/Vs and on/off current ratio larger than 10$^{7}$

  • PDF

Effect of Hydrogen in the Gate Insulator on the Bottom Gate Oxide TFT

  • KoPark, Sang-Hee;Ryu, Min-Ki;Yang, Shin-Hyuk;Yoon, Sung-Min;Hwang, Chi-Sun
    • Journal of Information Display
    • /
    • v.11 no.3
    • /
    • pp.113-118
    • /
    • 2010
  • The effect of hydrogen in the alumina gate insulator on the bottom gate oxide thin film transistor (TFT) with an InGaZnO film as the active layer was investigated. TFT with more H-containing alumina films (TFT A) fabricated via atomic layer deposition using a water precursor showed higher stability under positive and negative bias stresses than that with less H-containing alumina deposited using ozone (TFT B). While TFT A was affected by the pre-vacuum annealing of GI, which resulted in $V_{th}$ instability under NBS, TFT B did not show a difference after the pre-vacuum annealing of GI. All the TFTs showed negative-bias-enhanced photo instability.