DOI QR코드

DOI QR Code

High Performance p-type SnO thin-film Transistor with SiOx Gate Insulator Deposited by Low-Temperature PECVD Method

  • U, Myeonghun (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Han, Young-Joon (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Song, Sang-Hun (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Cho, In-Tak (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Lee, Jong-Ho (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Kwon, Hyuck-In (School of Electrical and Electronics Engineering, Chung-Ang University)
  • Received : 2014.06.12
  • Accepted : 2014.08.11
  • Published : 2014.10.30

Abstract

We have investigated the gate insulator effects on the electrical performance of p-type tin monoxide (SnO) thin-film transistors (TFTs). Various SnO TFTs are fabricated with different gate insulators of a thermal $SiO_2$, a plasma-enhanced chemical vapor deposition (PECVD) $SiO_x$, a $150^{\circ}C$-deposited PEVCD $SiO_x$, and a $300^{\circ}C$-deposited PECVD $SiO_x$. Among the devices, the one with the $150^{\circ}C$-deposited PEVCD $SiO_x$ exhibits the best electrical performance including a high field-effect mobility ($=4.86cm^2/Vs$), a small subthreshold swing (=0.7 V/decade), and a turn-on voltage around 0 (V). Based on the X-ray diffraction data and the localized-trap-states model, the reduced carrier concentration and the increased carrier mobility due to the small grain size of the SnO thin-film are considered as possible mechanisms, resulting in its high electrical performance.

Keywords

References

  1. M. Nakata, K. Takechi, K. Azuma, E. Tokumitsu, H. Yamaguchi, and S. Kaneco, "Improvement of InGaZnO4 Thin Film Transistors Characteristics Utilizing Excimer Laser Annealing," Appl. Phys. Express, vol.2, pp.021102, 2009 https://doi.org/10.1143/APEX.2.021102
  2. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, "P-channel thin-film transistor using p-type oxide semiconductor, SnO," Appl. Phys. Lett., vol.93, pp. 032113, 2008. https://doi.org/10.1063/1.2964197
  3. L. Y. Liang, Z. M. Liu, H. T. Cao, Z. Yu, Y. Y. Shi, A. H. Chen, H. Z. Zhang, Y. Q. Fang, and X. L. Sun, "Phase and optical characterizations of annealed SnO thin films and their p-type TFT applications," J. Electrochem. Soc., vol.157, pp.H598, 2010. https://doi.org/10.1149/1.3385390
  4. K. Okamura, B. Nasr, R. A. Brand, and H. Hahn, "Solution-processed oxide semiconductor SnO in p-channel thin-film transistors," J. Mater. Chem., vol.22, pp. 4607, 2012. https://doi.org/10.1039/c2jm16426d
  5. J. A. C.-Frescas, P. K. Nayak, H. A. A.-Jawhari, D. B. Granato, U. Schwingenschlogl, and H. N. Alshareef, "Record mobility in tranparent p-type tin monoxide films and devices by phase engineering," ACS NANO, vol.7, pp.5160, 2013. https://doi.org/10.1021/nn400852r
  6. P. C. Hsu, W. C. Chen, Y. T. Tsai, Y. C. Kung, C. H. Chang, C. J. Hsu, C. C. Wu, and H. H. Hsieh, "Fabrication of p-type SnO Thin-Film Transistors Using Sputtering and Practical Metal Electrodes," Jpn. J. Appl. Phys., vol.52, 05DC07, 2013. https://doi.org/10.7567/JJAP.52.05DC07
  7. J. S. Lee, S. Chang, S.-M. Koo, and S. Y. Lee, "High-performance a-IGZO TFT with $ZrO_2$ gate dielectric fabricated at room temperature," IEEE Electron Device Lett., vol.31, pp.225, 2010. https://doi.org/10.1109/LED.2009.2038806
  8. M. F. Ceiler, Jr., P. A. Kohl, and S. A. Bidstrup, "Plasma Enhanced Chemical Vapor Deposition of Silicon Dioxide Deposited at Low Temperatures", J. Electrochem. Soc., vol.142, pp.2067, 1995. https://doi.org/10.1149/1.2044242
  9. K.W. Vogt, M. Houston, M.F. Ceiler, JR., C.E. Roberts, and P.A. Kohl, "Improvement in dielectric properties of low temperature PECVD silicon dioxide by reaction with hydrazine", J. Electron. Mater., vol.24, pp.751, 1995. https://doi.org/10.1007/BF02659735
  10. D. K. Schroder, "Semiconductor Material and Device Characterization", New York: Wiley, 1998.
  11. J. Y. W. Seto, "The electrical properties of polycrystalline silicon films," J. Appl. Phys., vol.46, pp.5247, 1975. https://doi.org/10.1063/1.321593
  12. S. Higashi, K. Ozaki, K. Sakamoto, Y. Kano, and T. Sameshima, "Electrical properties of excimer-laercrystallized lightly doped polycrystalline silicon films," Jpn. J. Appl. Phys., vol.38, pp.L857, 1999. https://doi.org/10.1143/JJAP.38.L857
  13. M. Shtein, J. Mapel, J. B. Benziger, S. R. Forrest, "Effects of Film Morphology and Gate Dielectric Surface Preparation on the Electrical Characteristics of Organic-Vapor-Phase-Deposited Pentacene Thin-Film Transistors," Appl. Phys. Lett., vol.81, pp.268, 2002. https://doi.org/10.1063/1.1491009
  14. M. J. Rack, D. Vasileska, D. K. Ferry, and M. Sidorov, "Surface roughness of $SiO_2$ from a remote microwave plasma enhanced chemical vapor deposition process," J. Vac. Sci. Technol. B, vol.16, pp.2165, 1998. https://doi.org/10.1116/1.590144
  15. S. Steudel, S. D. Vusser, S. D. Jonge, D. Janssen, S. Verlaak, J. Genoe, and P. Heremans, "Influence of the dielectric roughness on the performance of pentacene transistors," Appl. Phys. Lett., vol.85, pp.4400, 2004. https://doi.org/10.1063/1.1815042

Cited by

  1. Impact of thermal oxygen annealing on the properties of tin oxide films and characteristics of p-type thin-film transistors vol.55, pp.1, 2015, https://doi.org/10.7567/JJAP.55.016501
  2. Impact of gate dielectrics and oxygen annealing on tin-oxide thin-film transistors vol.55, pp.4S, 2016, https://doi.org/10.7567/JJAP.55.04EG02
  3. thin films prepared by reactive DC magnetron sputtering: effects of oxygen pressure and heat treatment vol.6, pp.75, 2016, https://doi.org/10.1039/C6RA08726D
  4. Performance Improvement of p-Channel Tin Monoxide Transistors With a Solution-Processed Zirconium Oxide Gate Dielectric vol.38, pp.11, 2017, https://doi.org/10.1109/LED.2017.2758349