• Title/Summary/Keyword: Gaseous

Search Result 1,371, Processing Time 0.023 seconds

Disinfection of Penicillium-infected Wheat Seed by Gaseous Chlorine Dioxide

  • Jeon, Young-ah;Lee, Ho-sun;Lee, Young-yi;Lee, Sokyoung;Sung, Jung-sook
    • Research in Plant Disease
    • /
    • v.21 no.2
    • /
    • pp.45-49
    • /
    • 2015
  • Seeds of wheat (Triticum aestivum L. cv. Olgeurumil) were infected with Penicillium sp. at mean infection rate of 83%. Penicillium sp. was detected in endosperm with bran but not in embryo. Gaseous chlorine dioxide ($ClO_2$) effectively inhibited growth of Penicillium sp. at concentration of 5 to $20{\mu}g/ml$. As treatment duration was extended from 1 to 3 h, growth of Penicillium sp. was completely suppressed even at $10{\mu}g/ml$. There was no significant reduction in the incidence of Penicillium sp. at 30% relative humidity (RH). However, the incidence of Penicillium sp. was 27.7% at 50% RH, further those were 3.5% and 0.2% at 70% and 80% RH, respectively. Seed germination was not affected by $ClO_2$ treatment at all the RH conditions. Water-soaked seeds (30% seed moisture content) showed a drastic reduction in the incidence of Penicillium sp. when treated at more than $10{\mu}g/ml$ of $ClO_2$. The incidences of Penicillium sp. were 3.3, 1.8 and 1.2% at 10, 15 and $20{\mu}g/ml$, respectively. The incidence of Penicillium sp. in dry seeds with 9.7% seed moisture content did not reduce when treated with 5 and $10{\mu}g/ml$ at 50% RH although it tended to decrease as $ClO_2$ concentration increased to $20{\mu}g/ml$. Seed germination was not affected by $ClO_2$ treatment at the tested concentrations. These results indicated that gaseous $ClO_2$ was effective disinfectant to wheat seeds infected with Penicillium sp. and that the effectiveness of $ClO_2$ strongly increased when moisture content around or inside of the seed was increased.

Formation of compound layers and Wear behavior of AISI4115 steels by gaseous nitriding process (AISI4115 기계구조용 합금강의 질화 가스분위기에 따른 화합물층의 형성 및 내마모특성)

  • Kim, Taehwan;Son, Seokwon;Cho, Kyuntaek;Lee, Kee-ahn;Lee, Won-beom
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.267-277
    • /
    • 2021
  • Nitriding layers developed during gaseous nitriding of AISI4115 steels for the application of steel bushing part were investigated. The compound layer thickness of about 10㎛, 0.3mm of case depth under the same conditions, and conventional nitriding, nitrocarburizing, and controlled nitriding were performed in three methods. In the controlled nitriding, KN was controlled by measuring the hydrogen partial pressure. The nitrided samples were analyzed by micro Vickers hardness test, optical microscopy and scanning electron microscopy. The phases of compound layer were identified by X-ray diffraction and electron backscatter diffraction. The controlled nitriding specimen indicated the highest surface hardness of about 860 HV0.1. The compound layer of the conventional nitriding and nitrocarburizing specimen was formed with about 46% porous layer and 𝜺 + 𝜸' phase, and about 13% porous layer and about 80% 𝜸' phase were formed on the controlled nitriding specimen. As a result of the Ball-on-disk wear test, the worn mass loss of ball performed on the surface of the controlled nitriding specimen was the largest. The controlled nitriding specimen had the highest surface hardness due to the lowest porous percentage of compound layer, which improved the wear resistance.

A Study on Annual Release Objectives and Annual Release Limits of Gaseous Effluents During Decommissioning of Nuclear Power Plants (원전 해체 시 기체상 유출물의 연간 방출관리치 및 방출한도치에 관한 연구)

  • Lee, Seung-Hee;Hwang, Won-Tae;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.299-311
    • /
    • 2019
  • Decommissioning is a critical issue in Korea. Although compared with the operation of nuclear power plants the release of radioactive materials during decommissioning is not expected to be significant, residents should always be protected from radiation exposure. To manage this effectively, Annual Release Objectives (ARO) and Annual Release Limits (ARL) were derived from dose standards in the NSSC Notice and dose limit for the public. Based on meteorological data for the three years from 2008 to 2010 in the Shin Kori nuclear power plant site, atmospheric dispersion and ground deposition factors of gaseous effluent were evaluated using the XOQDOQ computer code. The exposure dose was evaluated using the ENDOS-G computer code. Because of differences in radiological sensitivity according to age groups, the results of Annual Release Objectives (ARO) and Annual Release Limits (ARL) showed significant differences depending on the radionuclides. The evaluation methodology of this study will provide meaningful information for radioactive effluent management for decommissioning of nuclear power plants.

Technical Review on Liquid/Solid (Slush) Hydrogen Production Unit for Long-Term and Bulk storage (장주기/대용량 저장을 위한 액체/고체(Slush) 수소 생산 장치의 해외기술 동향분석)

  • LEE, CHANGHYEONG;RYU, JUYEOL;SOHN, GEUN;PARK, SUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.565-572
    • /
    • 2021
  • Hydrogen is currently produced from natural gas reforming or industrial process of by-product over than 90%. Additionally, there are green hydrogens based on renewable energy generation, but the import of green hydrogen from other countries is being considered due to the output variability depending on the weather and climate. Due to low density of hydrogen, it is difficult to storage and import hydrogen of large capacity. For improving low density issue of hydrogen, the gaseous hydrogen is liquefied and stored in cryogenic tank. Density of hydrogen increase from 0.081 kg/m3 to 71 kg/m3 when gaseous hydrogen transfer to liquid hydrogen. Density of liquid hydrogen is higher about 800 times than gaseous. However, since density and boiling point of liquid hydrogen is too lower than liquefied natural gas approximately 1/6 and 90 K, to store liquid hydrogen for long-term is very difficult too. To overcome this weakness, this paper introduces storage method of hydrogen based on liquid/solid (slush) and facilities for producing slush hydrogen to improve low density issue of hydrogen. Slush hydrogen is higher density and heat capacity than liquid hydrogen, can be expected to improve these issues.

Study on the effect of long-term high temperature irradiation on TRISO fuel

  • Shaimerdenov, Asset;Gizatulin, Shamil;Dyussambayev, Daulet;Askerbekov, Saulet;Ueta, Shohei;Aihara, Jun;Shibata, Taiju;Sakaba, Nariaki
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2792-2800
    • /
    • 2022
  • In the core of the WWR-K reactor, a long-term irradiation of tristructural isotopic (TRISO)-coated fuel particles (CFPs) with a UO2 kernel was carried out under high-temperature gas-cooled reactor (HTGR)-like operating conditions. The temperature of this TRISO fuel during irradiation varied in the range of 950-1100 ℃. A fission per initial metal atom (FIMA) of uranium burnup of 9.9% was reached. The release of gaseous fission products was measured in-pile. The release-to-birth ratio (R/B) for the fission product isotopes was calculated. Aspects of fuel safety while achieving deep fuel burnup are important and relevant, including maintaining the integrity of the fuel coatings. The main mechanisms of fuel failure are kernel migration, silicon carbide corrosion by palladium, and gas pressure increase inside the CFP. The formation of gaseous fission products and carbon monoxide leads to an increase in the internal pressure in the CFP, which is a dominant failure mechanism of the coatings under this level of burnup. Irradiated fuel compacts were subjected to electric dissociation to isolate the CFPs from the fuel compacts. In addition, nondestructive methods, such as X-ray radiography and gamma spectrometry, were used. The predicted R/B ratio was evaluated using the fission gas release model developed in the high-temperature test reactor (HTTR) project. In the model, both the through-coatings of failed CFPs and as-fabricated uranium contamination were assumed to be sources of the fission gas. The obtained R/B ratio for gaseous fission products allows the finalization and validation of the model for the release of fission products from the CFPs and fuel compacts. The success of the integrity of TRISO fuel irradiated at approximately 9.9% FIMA was demonstrated. A low fuel failure fraction and R/B ratios indicated good performance and reliability of the studied TRISO fuel.

Concentration variability of atmospheric radon and gaseous pollutants at background area of Korea between 2017 and 2018

  • Kim, Won-Hyung;Yang, Hyo-Sun;Bu, Jun-Oh;Kang, Chang-Hee;Song, Jung-Min;Chambers, S.
    • Analytical Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.32-40
    • /
    • 2022
  • The concentrations of radon in the atmosphere were measured at the Gosan site of Jeju Island during 2017-2018, in order to investigate the time-series variation characteristics and the dependency of airflow transport pathways. The mean 222Rn concentration was 2,480 mBq m-3, and its monthly concentration in November was 3,262 mBq m-3, more than twice as that in July (1,459 mBq m-3). The diurnal radon concentrations increased throughout the nighttime to the maximum (2,862 mBq m-3) at around 7 a.m., then gradually decreased throughout the daytime by the minimum (1,997 mBq m-3) at around 3 p.m. The seasonal and monthly variations of CO, NO2, O3 showed a roughly similar pattern to that of radon for the same period, as high in winter and low in summer. The cluster back trajectory analysis described that about 60 % of overall airflow pathways was influenced by the airflow from China. The concentrations of radon and gaseous pollutants were relatively high as the airflow was influenced by China continent, but comparatively much lower as influenced by the northern Pacific Ocean.

Development of Gaseous Pollutant Emission Factor by Incineration of Barley & Wheat among Agricultural Residues (영농부산물 소각에서 발생하는 가스상 오염물질의 배출계수 개발 -맥류를 중심으로-)

  • Min-Wook Kim;Joon-Young Roh;Ji-Yun Woo;Dong-Eun Lee;Hong-Sung Chang;Seung-Jin Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.444-449
    • /
    • 2023
  • The current study involved the calculation of air pollutant emission factors (EFs) generated from the incineration of agricultural residues. The process included sample collection, weight measurement, moisture measurement, incineration system configuration, and concentration measurement. The average CO emission factor of gaseous air pollutants from the incineration of barley and wheat agricultural residues was calculated as 0.08289 kg/kg and 0.06665 kg/kg, respectively, whereas the average NOX emission factor for barley and wheat agricultural residues was determined to be 0.00518 kg/kg and 0.00185 kg/kg, respectively. In the existing air pollutant emission calculation manual, the EF is presented only for barley. Therefore, in this study, we have introduced the EF for wheat, previously absent in the calculation manual. Additionally, the air pollutant calculation manual presents the EF of air pollutants as one value, but in this study, EF values corresponding to 2.5% and 97.5% were presented in consideration of the distribution of experimental values as shown in EMEP/EEA data.

Radiological Dose Analysis to the Public Resulting from the Operation of Daedeok Nuclear Facilities (대덕부지 원자력관련시설 운영에 따른 주민피폭선량 현황분석)

  • Jeong, Hae Sun;Kim, Eun Han;Jeong, Hyo Joon;Han, Moon Hee;Park, Mi Sun;Hwang, Won Tae
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.38-45
    • /
    • 2014
  • This paper describes the results of assessment of radiological dose resulting from operation of the Daedeok nuclear facilities including the HANARO research reactor, which has been performed to assure whether or not to comply with the regulation standards of the radioactive effluents releases. Based on the meteorological data and the radiation source term, the maximum individual doses were evaluated from 2010 to 2012. The atmospheric dispersion and the deposition factors of gaseous effluents were calculated using the XOQDOQ computer code. ENDOS-G and ENDOS-L code systems were also used for maximum individual dose calculation from gaseous and liquid effluents, respectively. The results were compared with the regulation standards for the radioactive effluents presented by the Nuclear Safety and Security Commission (NSSC). The effective doses and the thyroid doses of the maximum individual were calculated at the maximum exposed point in the Daedeok site, and contributions of exposure pathways to the radiological doses resulting from gaseous and liquid radioactive effluents were evaluated at each facility of the Daedeok site. As a result, the maximum exposed age was analysed to be the child group, and the operation of HANARO research reactor had a major effect more than 90% on the individual doses. The main exposure pathways for gaseous radioactive effluent were from ingestion and inhalation. The effective doses and the thyroid doses were considerably influenced by tritium and iodine, respectively. The gaseous radioactive effluents contributed more than 90% on the total doses, whereas the contributions of the liquid radioactive effluents were relatively low. Consequently, the maximum individual dose due to radioactive effluents from the nuclear facilities within the Daedeok site were less than 3% of the regulation standard over 3 years; therefore, it can be concluded that radioactive effluents from the nuclear facilities were well managed, with the radiation-induced health detriment for residents around the site being negligible.

Practical Radiation Safety Control: (II) Application of Numerical Guidance for the Discharges of Radioactive Gaseous and Liquid Effluents (방사선안전관리 실무: (II) 배기중 및 배수중 배출관리기준의 적용)

  • Kim, Hyun Kee
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.61-64
    • /
    • 2014
  • Radioactive materials are in use and have many applications from the generation of electricity to the purposes of research, industry and medicine such as diagnosis and therapy. In the course of their use some of radioactive substances may be discharged into the environment from facilities using the unsealed radioactive materials, which are main artificial sources occurring the public exposure. Discharges are in the form of gases, particles or liquids. This paper provides procedures to estimate the level of the public exposure based on the conservative assumptions and simple calculations in the facility using unsealed liquid sources. They consist of two processes; (1) to calculate maximum concentration of gaseous effluents discharged through the exhaust pipe and average concentration of liquid effluents discharged through the drain of the storage tank, (2) to compare each of them to numerical guidances for the discharges of radioactive gaseous and liquid effluents mentioned in the related notification. For this purpose followings are assumed properly; daily usage, form and dispersion rate of radionuclides, daily amount of radioactive liquid waste and exhaust and drainage equipment. The procedures are readily applicable to evaluate environmental effects by planned effluent discharges from facilities using the unsealed radioactive materials. In addition they may be utilized to obtain practical requirements for radiation safety control necessary for the reductions of the public exposure.

A Study on the Trial Manufacture and Characteristics of Lamp Type Ozonizer (Lamp 형 오존발생기의 시작 및 특성에 관한 연구)

  • Kim, Sang-Ku;Song, Hyun-Jig;Kang, Cheon-Su;Park, Won-Zoo;Lee, Kwang-Sik;Lee, Dong-In
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.6
    • /
    • pp.62-72
    • /
    • 1996
  • In this paper, ozonizer using U-type lamp(Olamp) has been designed and manufactured, which can perform a role of lighting source and ozonizer by using photo and chemical methods. The discharge, spectrum, illuminance, ozone concentration, ozone generation, ozone yield and sterilization characteristics of Olamp have been studied. The important conclusions obtained from this paper can be summa'||'&'||'not;rized as follows. As a result of spectrum characteristics for Olamp, ultraviolet ray of a short wave'||'&'||'not;lengths and a visible ray are radiated. The illuminance of Olamp was found to be useful for "color distinctive and intermittent works in the dark working spaces" in accordance with KS A 3011. The ozone concentration of gaseous phase is inversely proportional to quality of supplied gas. Also, ozone conce tration and generation of gaseous phase are rised more commercial oxygen gas than those trial air gas for constant quality of supplied gas. Ozone generation and ozone yield of gaseous phase are proportion'||'&'||'not;al to ozone concentration of gaseous phase. The characteristics of liquid ozone concentration at distilled water are proportional to circulating velocity of fermentation chamber and ozone concentration of gas'||'&'||'not;eous phase. As a result, the sterilization characteristics of Escherichia coli have been obtained more than 97[ % J.

  • PDF