• 제목/요약/키워드: Gas-Phase

Search Result 3,261, Processing Time 0.032 seconds

Analysis of Gas-Solid Flow for the Optimum Design of Coal Splitter (입자분리기 최적 설계를 위한 다상 유동 해석)

  • Yok, Sim-Kyun;Ryu, Jae-Wook;Ik-Hyeong;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1604-1611
    • /
    • 2003
  • The experimental investigation of a coal splitter used in the 500㎿(e) boilers of fossil power plant is carried out to validate the design criteria. To predict air flow and the amount of particles at the exit, velocity and the weight of particles are measured on test planes using the coal splitter model with two-dimensional phase doppler particle analyzer and the glass fiber filter. It is found that the position of guide plate influences significantly both flow rates of gas and particle at the exit. Gas flow rate was a linear function of the guide plate, whereas particle flow rate was a exponential function of it.

A Numerical Study on Axial Inlet Cyclone for Diesel Engine (디젤 엔진용 싸이클론 내부 수치 해석)

  • Kim, S.K.;Son, C.S.;Kim, I.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.16-21
    • /
    • 2006
  • On this study, numerical analysis was performed for the 3 dimensional flow field of gas and particle phase for axial inlet cyclone, a part of dust collector. We applied FVM to visualize the gas phase. The flow was solved using ${\kappa}-{\varepsilon}$ turbulence model. The major parameters considered in this study were helical guide vane, inner diameter, length. Particle trajectory calculations were performed for the particle sizes of $5{\mu}m{\sim}75{\mu}m$. The distribution curve of particle sizes was made of Rosin-Rammler function. The simulation results show various gas flows, particle trajectories on numerical models.

  • PDF

The Numerical multi-phase analysis of ventilating flow around vehicle (환기 공동을 이용한 수중운동체 주위의 초월 공동 다상유동장 해석)

  • Park, Wam-Gyu;Kim, Dong-Hyun;Jung, Chul-Min
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.252-255
    • /
    • 2011
  • Supercavitating torpedo uses the supercavitation technology that can reduce dramatically the skin friction drag. The present work focuses on the numerical analysis of the non-condensable cavitating flow around the supercavitating torpedo. The governing equations are the Navier-Stokes equations based on the homogeneous mixture model. The cavitation model uses a new cavitation model which was developed by Merkle(2006). The multiphase flow solver uses an implicit preconditioning scheme in curvilinear coordinates. The ventilated cavitation is implemented by non-condensable gas injection on backward of cavitator cone and the base of the torpedo. The comparison between the without and with ventilated cavitation numerical results, with ventilated cavitation using non-condensable gas injection is more efficient method.

  • PDF

Gas Barrier Properties of Nanolaminated Single Inorganic Film Deposited by Neutral Beam Assisted Sputtering Process

  • Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.465-465
    • /
    • 2012
  • In this study, we developed an Al2O3 nanolaminated single gas barrier layer using a Neutral Beam Assisted Sputtering (NBAS) process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nanocrystal phase with various grain sizes and lead to the formation of a nanolaminated structure in the single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the nanolaminated Al2O3 thin films by NBAS process have improved more than 40% compared with that of conventional Al2O3 layers by the RF magnetron sputtering process under the same sputtering conditions.

  • PDF

Numerical Study of Cyclone Dust Collector (싸이클론 집진기의 수치해석적 연구)

  • 전영남;엄태인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.43-53
    • /
    • 1996
  • Numerical simulation was performed for the 3-dimensional flow filed of gas and particle phase for cyclone dust collector. FVM(Finite Volume Method) was employed for gas phase. The flow was solved suing the k-.varepsilon. epsilon turbulence model. The particle exit at the bottom of the cone was treated as a solid wall in this model because the gas flow through the effective dust exit is usually insignificant. The major parameters considered in this study was vortex finder diameter, effective dust exit diameterm vortex finder length, inlet type for dimension performance. Particle trajectory calculations were made for three different, particle sizes of 1, 25 and 50 .mu.m. The results obtained from this study give some physical insight of dust particle collection mechanism together with the indication of the collection efficiency. The simulation results were in generally good agreement with empirical knowledge. The application of this kind of computer program looks promising as a potential tool for the design of cyclone and determination of optimum operating condition.

  • PDF

Determination of Thiamin by Gas-chromatography (기체크로마토그래피법에 의한 티아민 분석)

  • Yoo, Ji-Sang;Moon, Dong-Cheul;Hong, Sung-Hwa;Han, Kun;Kim, Bak-Kwang
    • YAKHAK HOEJI
    • /
    • v.33 no.3
    • /
    • pp.156-160
    • /
    • 1989
  • A gas-chromatographic determination method of thiamin which use a quantitative cleavage of thiamin to 4-methyl-5-(2-hydroxyethyl)thiazol [I] and solvent extraction of the analyte prior to GC injection was modified. A column chromatographic procedure using a reversed phase, high capacity solid phase cartridge was applied to the clean-up of the analyte. Thiazol derivative[I] was quantitatively recovered upon the column method. Acetanilide, an internal standard, has a good recovery through the analytical procedure. The method has analytical precision of 2% or less in the coefficient of variation.

  • PDF

Separation of Amino Acid Enantiomers by Gas Chromatography II (가스크로마토그라피에 의한 아미노산 광학이성체의 분리 II)

  • 박만기;강종성;유재하;박정일;전동원
    • YAKHAK HOEJI
    • /
    • v.30 no.1
    • /
    • pp.47-50
    • /
    • 1986
  • The enantiomers of five amino acids (alanine, valine, threonine, leucine and phenylalanine) could be separated by gas chromatography with optically active (S)-5-isopropyll-$N^3$-phenyl-2-thiohydantoinic stationary phase, which prepared from L-valine and phenylisothiocyanate. Gas chromatographic separations on methylesterificated and N-trifluoroacetylated amino acids have been conducted in isothermal at several column temperatures (180~190, 200, $210^{\circ}C$). The separation factors were 1.29 (alanine, $190^{\circ}C$), 1.35 (valine, $190^{\circ}C$), 1.33 (threonine, $190^{\circ}C$), 1.17 (leucine, $190^{\circ}C$) and 1.05 (phenylalanine, $190^{\circ}C$) and D-isomers eluted prior to L-isomers in every instance. The result of this experiment shows that this stationary phase can be used for the separation of the other amino acids enantiomers.

  • PDF

Gas Phase Analysis of the Diamond CVD Reaction by Hot Filament Method (열필라멘트법에 의한 다이아몬드 CVD반응의 기상 조성 분석)

  • 서문규
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.11
    • /
    • pp.1233-1239
    • /
    • 1998
  • Gas phase compositions of the hot filament-assisted diamond CVD reaction were analyzed by on-line quadrupole mass analysis(QMA) technique. D2 isotope experiments showed that methance molecules were decomposed into atomic state and then recombined in to acetylene during transport the probe line. Although acetylene or ethylene was supplied instead of methane similar gas compositions were obtained when filament temperature was above 1500$^{\circ}C$ Therefore this system could be assumed near thermal equilibrium state. Filament temperature and reaction pressure variation experiments exhibited the same tendency between acetylene concentration and diamond growth rate and these results implied that acetylene molecule played the role of the reactive species in the diamond CVD reaction.

  • PDF

Reaction of Gas-Phase Bromine Atom with Chemisorbed Hydrogen Atoms on a Silicon(100)-(2${\times}$1) Surface

  • Lee, Jong Baek;Jang, Gyeong Sun;Mun, Gyeong Hwan;Kim, Yu Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.889-896
    • /
    • 2001
  • The reaction of gas-phase atomic bromine with highly covered chemisorbed hydrogen atoms on a silicon surface is studied by use of the classical trajectory approach. It is found that the major reaction is the formation of HBr(g), and it proceeds th rough two modes, that is, direct Eley-Rideal and hot-atom mechanism. The HBr formation reaction takes place on a picosecond time scale with most of the reaction exothermicity depositing in the product vibration and translation. The adsorption of Br(g) on the surface is the second most efficient reaction pathway. The total reaction cross sections are $2.53{\AA}2$ for the HBr formation and $2.32{\AA}2$ for the adsorption of Br(g) at gas temperature 1500 K and surface temperature 300 K.

Effect of Radial Gas Jet Momentum on Spray Characteristics in a Coaxial Porous Injector (동축형 다공성재 분사기의 반경방향 운동량이 분무특성에 미치는 영향)

  • Kim, Do-Hun;Seo, Min-Kyo;Lee, In-Chul;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.104-105
    • /
    • 2012
  • The design of coaxial porous injector was suggested to improve the mixing and atomizing performance at the center region of the conventional 2-phase flow coaxial shear injector spray. Several cold flow tests of 2-dimensional injectors was performed, and the gas injection area was varied to determine the effect of the magnitude of gas radial momentum.

  • PDF