• Title/Summary/Keyword: Gas safety

Search Result 2,931, Processing Time 0.038 seconds

A method of human error management in chemical process industries (화학공정산업의 인적오류 제어 방법)

  • Jo Young-Do;Park Kyo-Shik;Park Heui-Joon
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.2 s.19
    • /
    • pp.42-47
    • /
    • 2003
  • To prevent major accident from toxic gas release, explosion, or fire in chemical processes, it needs dynamic control of human error with mechanical failure. Although most of major accidents occur with a coupling of human error and mechanical failure, numbers of researches have studied human error and mechanical reliability independently, but no where cross each other, to reduce the risk in the process. This work focuses on the coincidence of human error and mechanical failure for management of human error, and on some important performance shaping factors to propose a method for improving safety effectively of the process industries.

  • PDF

Developing and Optimizing CDMA Monitoring System of pipeline in Ubiquitous City gas infrastructure (유비쿼터스 도시가스 인프라 내의 CDMA 노출배관 모니터링 시스템 개발 및 최적화)

  • Oh, Jeong Seok;Park, Jang Sik;Kwon, Jeong Rock
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.485-486
    • /
    • 2009
  • 도시가스 배관에서 노출배관 위험요소에 대한 모니터링이 필요하나 현재는 인위적으로 사람에 의해 확인하거나 유선 기반의 감시 시스템이 존재한다. 이에 대한 제반 비용을 감소시키면서 무선 기반의 감시 인프라를 구축하기 위해 본 연구에서는 노출배관의 위험요소 중에서 가장 중용한 응력과 진동을 측정하고 CDMA 방식을 이용하여 모니터링 시스템에 전달해주는 시스템을 구축하며 실제 환경에서 시험환경(Test-bed)을 조성하여 대상 시설 및 설치 환경에 따라 최적화된 기기 및 인프라를 구축하는 것을 본 연구에서 기밸반된 도시가스 안전 유비쿼터스 인프라에 통합시키는 것을 목적으로 한다.

The Development of the Safety Valve for LP Gas Cylinder Using the Sintered Metal (소결금속을 이용한 LPG 용기용 안전 밸브의 개발)

  • Rhim, Jong-Kuk
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.48-52
    • /
    • 2006
  • This study is a research of safety valve development for LP gas cylinder which use sintering metal. Re-searcher wishes to apply technology of sintering metal for safety valve development and do gas flow control. The basis of this study is most suitable fluid examination that to reduce gas accident. This research concluded following results. 1. When press pin length is 42mm to 45mm powder quantity is 0.25g, in case of press pin length 36mm to 42mm powder quantity is 0.2g, displayed fluid optimization. 2. When press pin length is 39mm and powder quantity is 0.25g, press pressure displayed fluid optimization at all interests from $1.2\;tons/cm^{2}\;to\;2\;tons/cm^{2}$. 3. When apparent density is about $5.0g/cm^{3}\;to\;4.5g/cm^{3}$, fluid optimization becomes.

Establishing the Safety of the Hydrogen Industry Through the Revision of Domestic Liquefied Hydrogen Safety Standards (국내 액화수소 안전기준 제·개정을 통한 수소산업 안전성 확립)

  • Kim, Hyun-Jin;Song, Boe-Hee;Tak, Song-Su;Joe, Hoe-Yeon;Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.98-105
    • /
    • 2021
  • Currently, the government's announcement of the Korean version of the New Deal Comprehensive Plan ('20.7.14), expanding the supply of hydrogen production and charging facilities, and major companies are rapidly building related facilities such as liquefied hydrogen plants and charging stations. However, safety standards for production, storage facilities, transportation, and utilization of liquefied hydrogen value chains in Korea are insufficient, and safety technologies and safety standards over the entire period of liquefied hydrogen are urgently needed. Accordingly, the Korea Gas Safety Corporation is trying to realize a safe hydrogen economy in Korea by enacting safety standards over the entire period, including liquefied hydrogen plants

A Study on Anti-Islanding Evaluation of Grid-Connected Power Conditioning System for Fuel Cell System in Parallel Operation (병렬 연결된 계통연계형 연료전지 전력변환장치의 단독운전방지 평가 연구)

  • Choi, Young-Joo;Oh, Gun-Woo;Kim, Min-Woo;Lee, Seung-Kuk;Park, Ga-Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.5
    • /
    • pp.124-132
    • /
    • 2018
  • The supply of renewable energy has become more vigorous due to Paris Agreement. In Korea, supply policies of renewable energy is being promoted with priority given to public buildings, so, the supply of fuel cell system that are relatively easy to install in buildings is expected to expand, so it is important that study on anti-islanding evaluation of grid-connected power conditioning system(PCS) for fuel cell. In this study, we consider that KGS AB934 PC53 in domestic certification standard of PCS for fuel cell correspond with abroad standard and analyze anti-islanding evaluation that important safety performance when connected grid. Additionally, we constructed a prototype for anti-islanding evaluation of PCS for fuel cell connected in parallel and carried out the demonstration evaluation, so, we have conducted ways that ensure safety performance in accordance with the circumstances where several fuel cell systems are installed.

Influence of Filler Particle Size on Behaviour of EPDM Rubber for Fuel Cell Vehicle Application under High-Pressure Hydrogen Environment (수소전기차용 EPDM 고무의 충전재 입자 크기별 고압 수소 환경에서의 거동 연구)

  • KIM, KEEJUNG;JEON, HYEONG-RYEOL;KANG, YOUNG-IM;KIM, WANJIN;YEOM, JIWOONG;CHOI, SUNG-JOON;CHO, SUNGMIN
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.5
    • /
    • pp.453-458
    • /
    • 2020
  • In this study, ethylene-propylene-diene monomer (EPDM) rubbers reinforced with various particle size of carbon black were prepared and tested. We followed recently published CSA/ANSI CHMC2 standard "the test methods for evaluating material compatibility in compressed hydrogen applications-polyemr". Measurement of change in hardness, tensile strength and volume were performed after exposure to maximum operating pressure, 87.5 MPa, for 168 hours (1 week). Once EPDM was exposed to high-pressure hydrogen, the samples experience volume increase and degradation of the physical properties. Also, after the dissolved hydrogen was fully eliminated from the specimens, the hardness and the tensile properties were not recovered. The rubber reinforced with smaller sizes of carbon black particles showed less volume expansion and decrease of physical properties. As a result, smaller particle size of carbon black filler led to more resistance to high-pressure hydrogen.