References
- M. Momirlan and T. Veziroglu, "Current status of hydrogen energy", Renewable and Sustainable Energy Reviews, Vol. 6, 2002, pp. 141-179, doi: https://doi.org/10.1016/S1364-0321(02)00004-7.
- ISO, "ISO 19880-1:2020, gaseous hydrogen - fuelling stations - part 1: general requirements", ISO, 2020. Retrieved from https://www.iso.org/standard/71940.html.
- B. J. Briscoe, T. Savvas, and C. T. Kelly, "Explosive decompression failure of rubbers: a review of the origins of pneumatic stress induced rupture in elastomers", Rubber Chemistry and Technology, Vol. 67, No. 3, 1994, pp. 384-416, doi: https://doi.org/10.5254/1.3538683.
- A. N. Gent and D. A. Tompkins, "Nucleation and growth of gas bubbles in elastomers", Journal of Applied Physics, Vol. 40, 1969, pp. 2520-2525, doi: https://doi.org/10.1063/1.1658026.
- A. Stevenson and G. Morgan, "Fracture of elastomers by gas decompression", Rubber Chemistry and Technology, Vol. 68, No. 2, 1995, pp. 197-211, doi: https://doi.org/10.5254/1.3538735.
- S. Zakaria and B. J. Briscoe, "Why rubber explodes", Chemtech, Vol. 20, No. 8, 1990, pp. 492-495.
- J. Yamabe and S. Nishimura, "Influence of fillers on hydrogen penetration properties and blister fracture of rubber composites for O-ring exposed to high-pressure hydrogen gas", Int. J. Hydrogen Energy, Vol. 34, No. 4, 2009, pp. 1977-1989, doi: https://doi.org/10.1016/j.ijhydene.2008.11.105.
- ANSI, "CSA/ANSI CHMC2 test methods for evaluating material compatibility in compressed hydrogen applications - polymers", 2019. Retrieved from https://store.csagroup.org/ccrz__ProductDetails?viewState=DetailView&cartID=&portalUser=&store=&cclcl=en_US&sku=CSA%2FANSI%20CHMC%202%3A19.
- ASTM International, "ASTM D2240-00, standard test method for rubber property-durometer hardness", ASTM International, 2002. Retrieved from https://www.astm.org/DATABASE.CART/HISTORICAL/D2240-00.htm.
- ISO, "ISO 37:2017 rubber, vulcanized or thermoplastic - determination of tensile stress-strain properties", ISO, 2017. Retrieved form https://www.iso.org/obp/ui/#iso:std:iso:37:ed-6:v1:en.
- J. Yamabe and S. Nishimura, "Influence of carbon black on decompression failure and hydrogen permeation properties of filled ethylene-propylene-diene-methylene rubbers exposed to high-pressure hydrogen gas", Journal of Applied Polymer Science, Vol. 122, 2011, pp. 3172-3187, doi: https://doi.org/10.1002/app.34344.
- J. Yamabe and S. Nishimura, "Tensile properties and swelling behavior of sealing rubber materials exposed to high-pressure hydrogen gas", Journal of Solid Mechanics and Materials Engineering, Vol. 6, No. 6, 2012, pp. 466-477, doi: https://doi.org/10.1299/jmmp.6.466.
- H. Fujiwara, "Analysis of acrylonitrile butadiene rubber (NBR) expanded with penetrated hydrogen due to high pressure hydrogen exposure", Nippon Gomu Kyokaishi, Vol. 44, No. 3, 2017, pp. 41-48, doi: https://doi.org/10.1177/0307174X1704400308.
- H. Fujiwara, J. Yamabe, and S. Nishimura, "Evaluation of he change in chemical structure of acrylonitrile butadiene rubber after high- pressure hydrogen exposure", Int. J. Hydrogen Energy, Vol. 37, No. 10, 2012, pp. 8729-8733, doi:https://doi.org/10.1016/j.ijhydene.2012.02.084.
- Y. Yamabe and S. Nishimura, "Nanoscale fracture analysis by atomic force microscopy of EPDM rubber due to highpressure hydrogen decompression", J. Mater. Sci., Vol. 46, 2011, pp. 2300-2307, doi: https://doi.org/10.1007/s10853-010-5073-4.
- Y. Ikeda, Y. Yasuda, K. Hijikata, M. Tosaka, and S. Kohjiya, "Comparative study on strain-induced crystallization behavior of peroxide cross-linked and sulfur cross-linked natural rubber", Macromolecules, Vol. 41, No. 15, 2008, pp. 5876-5884, doi: https://doi.org/10.1021/ma800144u.
- H. Dohi, M. Sakai, S. Tai, H. Nakamae, H. Kimura, M. Kotani, H. Kishimoto, and Y. Minagala, "Atomic force microscopy study on mesh structure formed on stretched rubber surface", KGK Kautschuk Gummi Kunststoffe, Vol. 60, 2007, pp. 52-55.