• Title/Summary/Keyword: Gas flow sensor

Search Result 134, Processing Time 0.031 seconds

Thermodynamic Analysis of Solid Electrolyte $CO_2$ Sensor in Continuous and Discontinuous Flow Systems (연속 기체흐름계 및 일시 기체흐름계에서의 고체 전해질 $CO_2$ 가스센서의 열역학적 분석)

  • Choi, Soon-Don
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.319-326
    • /
    • 1998
  • Anodic half-reaction in the $Na^+$ ionic sensors using $Na_2CO_3$ and $MCO_3$ ($M=Cs_2,K_2,Li_2,Ca$) as a sensitive membrane is derived in continuous flow system to explain $CO_2$ sensing characteristics. For various gas-sensitive membranes, a well known overall reaction, $MCO_3\;=\;MO\;+\;CO_2$, cannot be applied for the EMF behaviors of these kinds of sensors. So, the anodic reaction is found to involve $Na_2CO_3$ and $M^{++}$-containing oxide phases by employing the ion exchange reaction at the interface of solid electrolyte and the sensitive membrane to maintain ionic balance in the whole cell. Based on the electrode reaction derived in flow system, differences of cell potentials between continuous and discontinuous flow systems were also discussed. These EMF differences were considerably caused by the partial pressures of oxygen and $CO_2$ as well as irreversible chemical reactions between electrode materials and $CO_2$ atmosphere.

  • PDF

Study on Fault Detection of a Gas Pressure Regulator Based on Machine Learning Algorithms

  • Seo, Chan-Yang;Suh, Young-Joo;Kim, Dong-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.19-27
    • /
    • 2020
  • In this paper, we propose a machine learning method for diagnosing the failure of a gas pressure regulator. Originally, when implementing a machine learning model for detecting abnormal operation of a facility, it is common to install sensors to collect data. However, failure of a gas pressure regulator can lead to fatal safety problems, so that installing an additional sensor on a gas pressure regulator is not simple. In this paper, we propose various machine learning approach for diagnosing the abnormal operation of a gas pressure regulator with only the flow rate and gas pressure data collected from a gas pressure regulator itself. Since the fault data of a gas pressure regulator is not enough, the model is trained in all classes by applying the over-sampling method. The classification model was implemented using Gradient boosting, 1D Convolutional Neural Networks, and LSTM algorithm, and gradient boosting model showed the best performance among classification models with 99.975% accuracy.

Classification of Operating State of Screw Decanter using Video-Based Optical Flow and LSTM Classifier

  • Lee, Sang-Hyeop;Wesonga, Sheilla;Park, Jang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_1
    • /
    • pp.169-176
    • /
    • 2022
  • Prognostics and health management (PHM) is recently converging throughout the industry, one of the trending issue is to detect abnormal conditions at decanter centrifuge during water treatment facilities. Wastewater treatment operation produces corrosive gas which results failures on attached sensors. This scenario causes frequent sensor replacement and requires highly qualified manager's visual inspection while replacing important parts such as bearings and screws. In this paper, we propose anomaly detection by measuring the vibration of the decanter centrifuge based on the video camera images. Measuring the vibration of the screw decanter by applying the optical flow technique, the amount of movement change of the corresponding pixel is measured and fed into the LST M model. As a result, it is possible to detect the normal/warning/dangerous state based on LSTM classification. In the future work, we aim to gather more abnormal data in order to increase the further accuracy so that it can be utilized in the field of industry.

Flow Characteristics of a Gas-Liquid Slug Flow in Small Vertical Tubes (작은 수직관을 흐르는 기-액 슬러그 유동의 유동특성)

  • Kye, Seok-Hyun;Kim, Dong-Seon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.5
    • /
    • pp.246-254
    • /
    • 2013
  • Some characteristics of nitrogen-water slug flow were optically measured, in vertical acrylic tubes of 2, 5 and 8 mm diameter. Bubble velocity, bubble and unit cell lengths were measured, by analyzing the light intensity signals from two sets of dot laser-infrared sensor modules mounted along the transparent tubes. Optical images of the bubbles were also taken and analyzed, to measure bubble shapes and liquid film thickness. It was found that the measured bubble velocities were in good agreement with the empirical models in the literature, except for those measured under high superficial velocity condition in the 2 mm tube. Bubble length was found to be the longest in the 2 mm tube, being 4 to 5 times those of the other tubes. Liquid film was found to have developed early in the 2 mm tube, which made the blunt shape of the bubble head. Liquid film thickness in the 8 mm tube was measured at almost twice those of the other tubes.

Performance Evaluation of Measuring Instrument for Infra-Red Signature Suppression System Model Test (적외선 신호저감 장치 모형시험을 위한 계측기의 성능평가)

  • SeokTae Yoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.21-27
    • /
    • 2023
  • Modern naval ships install an Infra-Red Signature Suppression system (IRSS) in their exhaust pipe to reduce infrared signature emitted to the outside. In addition, naval ships are strategic assets with a very long life cycle, so high reliability of the performance of the equipment on board must be guaranteed. Therefore, equipment such as IRSS is evaluated for performance through model testing at the design stage. A variety of measuring instruments are used in IRSS model testing, and the reliability of these instruments must also be guaranteed. In this paper, a study was conducted to evaluate the reliability of measurement equipment used in IRSS model testing. The test equipment and instruments used were a hot gas wind tunnel, pitot tube, digital differential pressure gauge, thermocouple sensor, and digital recorder. As the fan speed of the hot gas wind tunnel increased, the measurement deviation of the flow decreased, and the temperature output of the thermocouple sensor showed differences in response time and stability depending on the method used.

A study on polycrystalline 3C-SiC etching with magnetron applied reactive ion etching for M/NEMS applications (마그네트론 RIE을 이용한 M/NEMS용 다결정 3C-SiC 식각 연구)

  • Chung, Gwiy-Sang;Ohn, Chang-Min;Nam, Chang-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.197-201
    • /
    • 2007
  • The magnetron reactive ion etching (RIE) characteristics of polycrystalline (poly) 3C-SiC grown on $SiO_{2}$/Si substrate by APCVD were investigated. Poly 3C-SiC was etched by $CHF_{3}$ gas, which can form a polymer as a function of side wall protective layers, with additive $O_{2}$ and Ar gases. Especially, it was performed in magnetron RIE, which can etch SiC at a lower ion energy than a commercial RIE system. Stable etching was achieved at 70 W and the poly 3C-SiC was undamaged. The etch rate could be controlled from $20\;{\AA}/min$ to $400\;{\AA}/min$ by the manipulation of gas flow rates, chamber pressure, RF power, and electrode gap. The best vertical structure was improved by the addition of 40 % $O_{2}$ and 16 % Ar with the $CHF_{3}$ reactive gas. Therefore, poly 3C-SiC etched by magnetron RIE can expect to be applied to M/NEMS applications.

A Development Of The Portable Spirometry System Of Pressure Method Using Static Pressure In Pitot Tube (개구관에서의 정체압을 이용한 차동 압력 방식의 휴대형 호흡측정 시스템 개발)

  • 이종수;신창민;김영길
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.6
    • /
    • pp.479-486
    • /
    • 2001
  • Spirometer is a medical equipment which diagnoses respiratory function by measuring 9as volume across Patient's lunes through airway. Because a little overdose of anesthesia medicine can take away Patient's life in the ventilator for a surgical operation. an exact measurement of respiring volume is very important. This Paper Presented an exact flow volume calculation method from factors having an influence on measurement and introduced a spirometry system for an anesthesia ventilato. This system, using differential Pressure sensor measured flow by mutual relation with Pressure. temperature. gas density and linearization from the 2nd order characteristics of differential pressure with flow.

  • PDF

Development of an Anaesthesia Ventilator by Volume Control Method and a Gas Monitoring System (가스 모니터 및 볼륨 제어 방식의 마취기용 인공 호흡기 개발)

  • Lee, Jong-Su;Seong, Jong-Hun;Kim, Yeong-Gil
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.4
    • /
    • pp.42-48
    • /
    • 2000
  • Generally an operator would take notice at putting a patient under anesthesia. If the operation is executed in mistake, the patient is exposed to danger. The object of this Paper is that a system is developed for an accuracy of system and a convenience of user interface to prevent an operation of several elements of risk by mistake. The part of electrical system particularly is made for convenience of a manipulation using electrical switch and encoder. A real-time monitoring system is developed for an airway pressure and a gas concentration of carbon dioxide of patient using graphic LCD(liquid crystal display). Moreover, this flow control system could be developed control with accuracy by feedback control method. This is implemented using flow control valve and flow sensor. The implemented system gives convenience and precision of a manipulation of variable value using developed technique. This system shows guaranteed stabilization and confidence of anesthesia ventilator by notifying us that patient's state and information in case of being out of alarm range of variable value.

  • PDF

Analysis of H-ICP Source by Noninvasive Plasma Diagnostics of Etching Process

  • Park, Kun-Joo;Kim, Min-Shik;Lee, Kwang-Min;Chae, Hee-Yeop;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.126-126
    • /
    • 2009
  • Noninvasive plasma diagnostic technique is introduced to analyze and characterize HICP (Helmholtz Inductively Coupled Plasma) source during the plasma etching process. The HICP reactor generates plasma mainly through RF source power at 13.56MHz RF power and RF bias power of 12.56MHz is applied to the cathode to independently control ion density and ion energy. For noninvasive sensors, the RF sensor and the OES (Optical emission spectroscopy) were employed since it is possible to obtain both physical and chemical properties of the reactor with plasma etching. The plasma impedance and optical spectra were observed while altering process parameters such as pressure, gas flow, source and bias power during the poly silicon etching process. In this experiment, we have found that data measured from these noninvasive sensors can be correlated to etch results. In this paper, we discuss the relationship between process parameters and the measurement data from RF sensor and OES such as plasma impedance and optical spectra and using these relationships to analyze and characterize H-ICP source.

  • PDF

Research and development of Hyundai FFVs(flexible fuel vehicles) (현대 FFV(Flexible Fuel Vehicle) 개발)

  • 명차리;이시훈;박광서;박심수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.67-73
    • /
    • 1992
  • This paper describes Hyundai's research and development work on a flexible fuel vehicle (FFV). The work on FFV has been conducted to evaluate its potential as an alternative to the conventional gasoline vehicle. Hyundai FFV described here can be operated on M85, gasoline, or any of their combinations, in which the methanol concentration is measured by an electrostatic type fuel sensor. For that operation, a special FFV ECU(Eletronic Control Unit) has been developed and incorporated in the FFV. The characteristics affecting FFV operation, such as FFV ECU control strategy and injector flow rate, have been investigated and optimized through the experiment. And various development tests have been performed in view of engine performance, durability, cold startability, and exhaust emissions reduction. The exhaust gas aftertreatment system consisting of manifold type catalyst and secondary air injection system shows good emission reduction performance including formaldehyde, and finally, the possibility of the FFVs as the low emission vehicles is evaluated by presenting NMOG(Non-Methane Organic Gases) levels with respect to M0 and M85. With these results, it is concluded that FFV can be a candidate for the low emission vehicles, but more works on its durability improvement is required.

  • PDF