• 제목/요약/키워드: Gas flow analysis

검색결과 1,654건 처리시간 0.034초

가스 터빈 Hot gas casing에 대한 유동 및 열응력 해석 (A study on the flow and thermal analysis of the hot gas casing of gas turbine)

  • 최영진;이영신;김재훈;박원식;김현수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.557-561
    • /
    • 2004
  • The hot gas casing of gas turbine has operated high temperature and thermal gradient. The structure safety of hot gas casing will be highly depend on the thermal stress. In this paper, flow and thermal stress analysis of hot gas casing is carried out using ANSYS program. The obtained temperature data by flow analysis of hot gas casing apply the load condition of the thermal analysis. The thermal stress analysis is carry out the elastic-plasticity analysis. The pressure, temperature and velocity of the flow and thermal stress of the hot gas casing are presented.

  • PDF

환경 에너지 시설 내 발효조, 소화기 및 건조기 유동해석 (Flow analysis of fermenter, digester and dryer environmental in energy facilities)

  • 전용한
    • Design & Manufacturing
    • /
    • 제13권4호
    • /
    • pp.28-33
    • /
    • 2019
  • In this study, the flow analysis of fermentation tank, digester and dryer, which are the main equipment in environmental energy facilities, was carried out. Numerical analysis was carried out with the size of the actual plant, and 3D modeling program CATIA V5 R16, grid generation program Gambit, and general purpose flow analysis package ANSYS-FLUENT (v13) were used. Simulation results of the carrier gas flow analysis in the STD dryer using the computational fluid dynamics program showed that the carrier gas smoothly circulated between the shells of the dryer and the flow was uniformly distributed without stagnation or flow. It is also predicted that rotational flow due to shell rotation is active. The average flow velocity of carrier gas in the STD dryer was estimated to be about 0.196m / s, and the average temperature of the carrier gas was calculated to be 424K. Due to the relatively slow carrier gas velocity and high average temperature, the water content of the sludge can be effectively lowered.

유동해석을 통한 신형 탈황설비용 GGH 요소 최적화 (Optimization of the Gas Gas Heater Element for Desulfurization Equipment through Flow Analysis)

  • 류봉조;오부진;백수곤;김후식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.599-602
    • /
    • 2008
  • This paper deals with the optimization of Gas-Gas-Heater elements for desulfurization equipment through flow analysis. The flow analysis model used in the paper is ${\kappa}-{\varepsilon}$ turbulent flow model. Temperature and flow velocity distributions for three types of panel elements are calculated. Through the analysis the following conclusions are obtained. Firstly, pressure differences of between inlet and outlet for three types of panel elements do not exceed in the standard pressure difference. Secondly, it is expected that NU-type panel element having wide area of heat transfer will be more effective in the aspect of the heat transfer.

  • PDF

Modelling and Simulation for PIG Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Yoo, Hui-Ryong;Park, Yong-Woo;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.448-448
    • /
    • 2000
  • This paper deals with dynamic behaviour analysis for pipeline inspection gauge (PIG) flow control in natural gas pipeline. The dynamic behaviour of the PIG is depending on the different Pressure between the rear and nose parts, which is generated by injected gas flow behind PIG's tail and expelled gas flow in front of its nose. To analyze the dynamic behaviour characteristics such as gas flow in pipeline, and the PIG's position and velocity, mathematical model is derived as two types of a nonlinear hyperbolic partial differential equation for unsteady flow analysis of the PIG driving and expelled gas, and nonhomogeneous differential equation for dynamic analysis of PIG. The nonlinear equation is solved by method of characteristics (MOC) with the regular rectangular grid under appropriate initial and boundary conditions. The Runge-Kuta method is used when we solve the steady flow equations to get initial flow values and the dynamic equation of PIG. The gas upstream and downstream of PIG are divided into a number of elements of equal length. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. The simulation is performed with a pipeline segment in the Korea Gas Corporation (KOGAS) low pressure system, Ueijungboo-Sangye line. The simulation results show us that the derived mathematical model and the proposed computational scheme are effective for estimating the position and velocity of PIG with different operational conditions of pipeline.

  • PDF

Modeling and Simulation for PIG Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Kim, Sang-Bong;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권8호
    • /
    • pp.1165-1173
    • /
    • 2001
  • This paper deals with dynamic analysis of Pipeline Inspection Gauge (PIG) flow control in natural gas pipelines. The dynamic behaviour of PIG depends on the pressure differential generated by injected gas flow behind the tail of the PIG and expelled gas flow in front of its nose. To analyze dynamic behaviour characteristics (e.g. gas flow, the PIG position and velocity) mathematical models are derived. Tow types of nonlinear hyperbolic partial differential equations are developed for unsteady flow analysis of the PIG driving and expelled gas. Also, a non-homogeneous differential equation for dynamic analysis of the PIG is given. The nonlinear equations are solved by method of characteristics (MOC) with a regular rectangular grid under appropriate initial and boundary conditions. Runge-Kutta method is used for solving the steady flow equations to get the initial flow values and for solving the dynamic equation of the PIG. The upstream and downstream regions are divided into a number of elements of equal length. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. Simulation is performed with a pipeline segment in the Korea gas corporation (KOGAS) low pressure system. Ueijungboo-Sangye line. The simulation results show that the derived mathematical models and the proposed computational scheme are effective for estimating the position and velocity of the PIG with a given operational condition of pipeline.

  • PDF

액상으로 분사되는 기체의 불안정성 해석 (Instability analysis of gas injection into liquid)

  • 김형준;권세진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.57-60
    • /
    • 2006
  • 액상의 환경으로 고속의 기체가 분사될 때 기체-액체 표면에서 일어나는 불안정성에 대해 점성전위 유동의 이론을 이용하여 분석하였다. 기체의 속도가 낮을 경우 액상으로 기포로 형성되지만 속도가 증가하면서 기체는 제트의 형태로 변하게 되는데, 천음속 구간에서 제트로 변하게 되는 것으로 알려져 있다. 본 연구에서는 주로 액체 제트를 해석하는데 사용된 점성전위유동이론을 기체 제트의 불안정성 해석에 응용하였다. 천음속 구간에서 기체 제트의 성장률이 변하는 것을 확인하였다. 초음속 구간으로 가면서 성장률이 감소하는 것을 확인하였다. 그리고 이를 레이놀즈수와 같은 무차원수에 대해 기체 제트의 성장률의 변화에 대해 알아보았다.

  • PDF

배열회수보일러(HRSG)의 입구유동 경계조건에 따른 유동특성 변화에 관한 연구 (A Numerical Analysis of Flow Characteristics in a Heat Recovery Steam Generator with the Change of Inlet Flow Conditions)

  • 김태권;이부윤;하지수
    • 한국가스학회지
    • /
    • 제15권3호
    • /
    • pp.53-57
    • /
    • 2011
  • 본 연구는 배열회수보일러(HRSG)에서의 유동특성을 유동수치해석을 통하여 분석하였다. HRSG 입구영역은 가스터빈 후류의 출구에 해당하고 가스터빈 후류는 강한 선회 및 난류 유동이다. 따라서 HRSG 입구 유동은 가스 터빈 출구 유동 특성이 고려되어야 한다. 본 연구에서는 HRSG 입구 유동 경계조건을 가스터빈 출구 유동 해석을 통하여 도출된 결과를 이용하였다. 가스터빈 출구 유동해석 결과를 보면 축방향 속도가 가장 크게 나타나는 곳이 원형 덕트의 벽면 측이고 난류운동에너지와 소산율이 크게 나타나는 곳이 속도 구배가 급격한 곳으로 축방향 속도가 최대가 되는 곳과 차이가 있다. 본 연구에서는 HRSG 입구영역에서의 난류 성분을 가스터빈 출구 유동을 계산 한 결과를 이용한 경우와 난류강도를 속도의 10%를 이용하고 원형 덕트의 직경을 특성 길이로 사용한 두 가지 경우에 대하여 유동해석을 통하여 유동 특성을 비교하였다. 본 연구를 통하여 HRSG 입구 유동 경계조건은 반드시 난류성분이 올바르게 적용되어야 HRSG 유동 특성 해석의 정확성을 기할 수 있음을 알았다.

솔레노이드 가스 인젝터의 유량제어와 천연가스엔진에서의 응용 (Flow Control of a Solenoid Gas Injector and Its Application on a Natural Gas Engine)

  • 심한섭
    • 한국기계가공학회지
    • /
    • 제8권2호
    • /
    • pp.83-89
    • /
    • 2009
  • An air-fuel ratio control is essential in reducing hazardous exhaust emissions from a compressed natural gas(CNG) engine, and can be accomplished by accurate control of gas injection flow. In this study, theoretical research was conducted on injection characteristics of a solenoid gas injector, and injection experiments for calibration and analysis were performed. Various factors for gas injection flow such as injection pressure, gas temperature, and supply voltage are studied. A dynamic flow equation of the natural gas was proposed on the basis of flow dynamics theories and results of the injection experiment. The verification of the dynamic flow equation of the solenoid injector was carried out with a large CNG-engine applied to an urban bus. Air-fuel ratio control experiments were conducted in both steady and transient state. Results of injection experiments for the solenoid injector and the CNG-engine was proved the control method proposed herein to be effective.

  • PDF

TVD기법을 이용한 가스 분무 공정의 유동장 해석 (Numerical analysis of a flow field in gas atomization process using a TVD scheme)

  • 심은보
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1996년도 춘계 학술대회논문집
    • /
    • pp.131-136
    • /
    • 1996
  • The numerical method for the flow field of a gas atomization process is presented. For the analysis of the compressible supersonic jet flow of a gas. an axisymmetric Navier-Stokes equations are solved using a LU-factored upwind method. The MUSCL type TVD scheme is used for the discretization of inviscid flux, whereas Steger-Warming splitting and LU factorization is applied to the implicit operator. For the validation of the present method, we computed the flow field around the simple gas atomizer proposed by Issac. The numerical results has shown excellent agreement with the experimental data.

  • PDF

가스 터빈 블레이드의 유동 및 응력 해석에 관한 연구 (Study on Flow and Stress Analysis of Gas Turbine Blade)

  • 조재웅;한문식
    • 한국기계가공학회지
    • /
    • 제10권3호
    • /
    • pp.67-72
    • /
    • 2011
  • Turbine blades operate under high temperature and pressure. The influence changes according to its width and angle. Thermal stress and pressure are important factors to analyze the stress distribution. The purpose of this study is to investigate the effects of loads on the gas turbine blade using thermal stress analysis. These analysis results show the gas fluid flow with a high pressure around the surface of blade. Gas temperature is related to the pressure of flow around the blade. The stress concentration around blade is shown and the concentration is due to the difference between suction side and pressure side of combustion gas.