• 제목/요약/키워드: Gas Turbine Blade

검색결과 190건 처리시간 0.032초

질소희석량 조절에 따른 터빈 운전조건 변화를 고려한 IGCC 용 가스터빈의 성능분석 (Performance Analysis of IGCC Gas Turbine Considering Turbine Operation Condition Change due to Modulation of Nitrogen Dilution)

  • 김창민;강도원;김동섭
    • 대한기계학회논문집B
    • /
    • 제37권11호
    • /
    • pp.1023-1029
    • /
    • 2013
  • IGCC 가스터빈과 공기분리기와의 결합이 중요한데 공기분리기로 공급되는 공기를 가스터빈에서 추출하는 정도와 공기분리기에 남는 질소를 연소기로 공급하는 정도가 중요한 운전 파라미터이다. 이러한 파라미터들이 가스터빈의 성능과 운전성에 미치는 영향은 설계조건인 ISO 조건뿐만 아니라 다양한 외기조건에 대해서도 고려되어야 한다. 본 연구에서는 여러 외기조건에서 터빈 블레이드 온도와 생산 가능한 출력의 한계를 만족하도록 하는 질소희석량과 터빈입구온도를 예측하였다. 공기 결합도는 0 으로 두었다. 해석결과 질소공급량이 많을수록 출력은 높아지고 블레이드 온도는 낮아졌다. 상온 근처의 특정 온도 이하의 외기 조건에서는 가스터빈이 낼 수 있는 최대 출력을 얻을 수 있으나 그 이상에서는 최대 출력을 생산하지 못함을 확인하였다.

가스터빈의 코팅층 건정성 평가를 위한 적외선 열화상 카메라 기법 활용 (IR Camera Technique Application for Evaluation of Gas Turbine Blades Covering Integrity)

  • 김재열;양동조;최철준;박상기;안연식;정계조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.192-196
    • /
    • 2005
  • Key part of main equipment in a gas turbine may be likely to be damaged due to operation under high temperature, high pressure, high-speed rotation, etc. Accordingly, the cost for maintenance increases and the damaged parts may cause generation to stop. The number of parts for maintenance also increases, but diagnostics technology fur the maintenance actually does not catch up with the demand. Blades are made of precipitation hardening Ni superalloy IN738 and the like for keeping hot strength. The surface of a blade is thermal-sprayed, using powder with main compositions such as Ni, Cr, Al, etc. in order to inhibit hot oxidation. Conventional regular maintenance of the coating layer of a blade is made by FPI (Fluorescent Penetrant Inspection) and MTP (Magnetic Particle Testing). Such methods, however, are complicated and take long time and also require much cost. In this study, defect diagnostics were tested for the coating layer of an industrial gas turbine blade, using an infraredthermography camera. Since the infrared thermography method can check a temperature distribution on a wide range of area by means of non-contact, it can advantageously save expenses and time as compared to conventional test methods. For the infrared thermography method, however, thermo-load must be applied onto a tested specimen and it is difficult to quantify the measured data. To solve the problems, this essay includes description about producing a specimen of a gas turbine blade (bucket), applying thermo-load onto the produced specimen, photographing thermography images by an infrared thermography camera, analyzing the thermography images, and pre-testing for analyzing defects on the coating layer of the gas turbine blade.

  • PDF

바이오가스 연료를 사용하는 소형 가스/증기터빈 복합 발전 시스템의 성능특성 해석 (Operating Characteristics Study of a Small Gas/Steam Turbine Combined System Using Biogas)

  • 강도원;신현동;김동섭;허광범;박정극
    • 한국유체기계학회 논문집
    • /
    • 제15권3호
    • /
    • pp.51-56
    • /
    • 2012
  • This study analyzed the influence of firing biogas on the performance and operation of a gas/steam turbine combined system. A reference gas/steam turbine combined system, designed with biogas fuel(57% volumetric methane) was set up and off-design simulation was made to investigate operating characteristics when a couple of operating schemes to mitigate turbine blade overheating were applied. Performance at base-load operation using each scheme was compared and part load operation using the variable inlet guide vane was analysed. Also, differences in operating characteristics and performance caused by changes in the methane content of biogas and ambient temperature were examined.

열 거동 영향에 따른 코팅층 검사 시스템 (Inspection System of Coating Layers by Thermal Behavior Effect)

  • 윤성운;김재열;최승현;김항우
    • 한국기계가공학회지
    • /
    • 제13권6호
    • /
    • pp.1-7
    • /
    • 2014
  • Gas turbines for generation are operated under high temperatures, high pressures and in corrosive environments for long periods of time. This environment causes serious damage to these parts. Therefore, the material, coating, and cooling technology used with a gas turbine are important factors with regard to turbine blade development. One method that can be used to protect a product from harsh conditions is the coating technology. A turbine blade undergoes very aggressive thermal stress and experiences high-temperature fatigue. In order to reduce the surface temperature of the components and protect the blade from high-temperature flames, a thermal barrier coating (TBC) is applied to its substrate. This study confirms the applicability of an inspection system for the turbine blade coating layer using an artificial heat source.

내산화 및 열차폐 코팅처리 가스터빈 블레이드의 균열거동 (Crack Initiation and Propagation at the Gas Turbine Blade with Antioxidation and Thermal Barrier Coating)

  • 강명수;김준성
    • 한국정밀공학회지
    • /
    • 제27권12호
    • /
    • pp.99-106
    • /
    • 2010
  • Gas turbines operation for power generation increased rapidly since 1990 due to the high efficiency in combined cycle, relatively low construction cost and low emission. But the operation and maintenance cost for gas turbine is high because the expensive superalloy hot gas path parts should be repaired and replaced periodically This study analyzed the initiation and propagation of the crack at the gas turbine blades which are coated with MCrAIY as a bond coat and TBC as a top coat. The sample blades had been serviced at the actual gas turbines for power generation. Total 7 sets of blades were analyzed and they have different EOH(equivalent operation hour). Blades were sectioned and the cracking distribution were measured and analyzed utilizing SEM(scanning electron microscope) and optical microscope. The blades which had 52,000 EOH of operation had cracks at the substrate and the maximum depth was 0.2 mm. Most of the cracks initiated at the boundary layer between TBC and bond coat and propagated down to the bond coat. Once bond coat is cracked, the base metal is exposed to the oxidation condition and undergoes notch effect. Under this environment, the crack branched at the inter-diffusion layer and propagated to the substrate. Critical cracks affecting the blade life were analyzed as those on suction side and platform.

경계 조건이 가스터빈 블레이드 냉각공기 유량에 미치는 영향 (Effect of Boundary Conditions on Internal Coolant Flow in Gas Turbine Blades)

  • 신지영;박병규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.559-564
    • /
    • 2001
  • Advanced gas turbine engines employ turbine entry temperatures so high that cooling of the turbine blades is essential. The coolant flow introduces losses which need to be minimized, and therefore it is important that the minimum amount of coolant is used. This work presents the result of the one-dimensional analysis and the effect of the boundary conditions on coolant flow rate in gas turbine blades.

  • PDF

경계조건에 따른 가스터빈 블레이드 냉각공기 유량변화 (Effect of Boundary Condition on the Flow Rate of the Internal Coolant in Gas Turbine Blades)

  • 신지영;박병규
    • 설비공학논문집
    • /
    • 제13권9호
    • /
    • pp.888-894
    • /
    • 2001
  • Advanced gas turbine engines employ turbine entry temperatures so high that cooling of the turbine blades is essential. The coolant flow introduces losses which need to be minimized, and therefore it is important that the minimum amount of coolant should be used. This work presents the result of the one-dimensional analysis and the effect of the boundary conditions on coolant flow rate in gas turbine blades.

  • PDF

바이오 가스를 사용하는 가스터빈 열병합 시스템의 전부하 및 부분부하 운전특성 해석 (A Study on Full and Part Load Operations of a Biogas-fired Gas Turbine Combined Heat and Power System)

  • 강도원;이종준;김동섭;허광범
    • 한국유체기계학회 논문집
    • /
    • 제14권2호
    • /
    • pp.35-40
    • /
    • 2011
  • This study analyzed the influence of firing biogas on the performance and operation of a gas turbine combined heat and power (CHP) system. A reference CHP system designed with natural gas fuel was set up and off-design simulation was made to investigate the impact of firing biogas in the system. Changes in critical operating parameters such as compressor surge margin and turbine blade temperature caused by firing biogas were examined, and a couple of operating schemes to mitigate their changes were simulated. Part load operation of the biogas-fired system was compared with that of natural-gas fired system, and it was found that as long as the two system produce the same electric power output, they exhibit nearly the same heat recovery.

A Robotic Vision System for Turbine Blade Cooling Hole Detection

  • Wang, Jianjun;Tang, Qing;Gan, Zhongxue
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.237-240
    • /
    • 2003
  • Gas turbines are extensively used in flight propulsion, electrical power generation, and other industrial applications. During its life span, a turbine blade is taken out periodically for repair and maintenance. This includes re-coating the blade surface and re-drilling the cooling holes/channels. A successful laser re-drilling requires the measurement of a hole within the accuracy of ${\pm}0.15mm$ in position and ${\pm}3^{\circ}$ in orientation. Detection of gas turbine blade/vane cooling hole position and orientation thus becomes a very important step for the vane/blade repair process. The industry is in urgent need of an automated system to fulfill the above task. This paper proposes approaches and algorithms to detect the cooling hole position and orientation by using a vision system mounted on a robot arm. The channel orientation is determined based on the alignment of the vision system with the channel axis. The opening position of the channel is the intersection between the channel axis and the surface around the channel opening. Experimental results have indicated that the concept of cooling hole identification is feasible. It has been shown that the reproducible detection of cooling channel position is with +/- 0.15mm accuracy and cooling channel orientation is with +/$-\;3^{\circ}$ with the current test conditions. Average processing time to search and identify channel position and orientation is less than 1 minute.

  • PDF