• Title/Summary/Keyword: Gas Supply

Search Result 1,269, Processing Time 0.026 seconds

Enhanced Production of Succinic Acid by Actinobacillus succinogenes using the Production Medium Supplemented with Recombinant Carbonic Anhydrases (재조합 탄산무수화 효소 첨가 생산배지를 이용한 Actinobacillus succinogenes 유래의 숙신산 생산성 향상)

  • Park, Sang-Min;Eum, Kyuri;Kim, Sangyong;Jeong, Yong-Seob;Lee, Dohoon;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.29 no.3
    • /
    • pp.155-164
    • /
    • 2014
  • Succinic acid, a representative biomass-derived platform chemical, is a major fermentation product of Actinobacillus succinogenes. It is well known that carbon dioxide is consumed during the succinate fermentation, but the biochemical mechanism behind this phenomenon is not yet understood well. In this study, it was found that the addition of carbonic anhydrase (CA)s into media significantly enhances the succinic acid production by A. succinogenes during the fermentation supplied with carbon dioxide. It is likely that the (bi) carbonate produced by the CA activity from gaseous carbon dioxide is favoured by A. succinogenes for consumption and utilization. Therefore, the $MgCO_3$ requirement could be significantly reduced without compromising the succinate productivity. Furthermore, because of too high price of the commercial carbonic anhydrase, it was undertaken to economically overproduce a cyanobacterial carbonic anhydrase by the use of a recombinant Pichia pastoris. An expression vector system was constructed with the carbonic anhydrase gene PCR-cloned from Cyanobacterium Synechocystis sp., and introduced into P. pastoris for fermentation studies. About 95.9 g/L of succinic acid was produced in the production medium with 30 ppm of carbonic anhydrase, approximately 2 fold higher productivity compared to the parallel process with no supplementation of the enzyme. It is expected that this method can provide a valuable way of overcoming inefficiencies inherent in gas supply during $CO_2$-based bioprocesses like succinic acid fermentation.

Secure Data Transaction Protocol for Privacy Protection in Smart Grid Environment (스마트 그리드 환경에서 프라이버시 보호를 위한 안전한 데이터 전송 프로토콜)

  • Go, Woong;Kwak, Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1701-1710
    • /
    • 2012
  • Recently, it has been found that it is important to use a smart grid to reduce greenhouse-gas emissions worldwide. A smart grid is a digitally enabled electrical grid that gathers, distributes, and acts on information regarding the behavior of all participants (suppliers and consumers) to improve the efficiency, importance, reliability, economics, and sustainability of electricity services. The smart grid technology uses two-way communication, where users can monitor and limit the electricity consumption of their home appliances in real time. Likewise, power companies can monitor and limit the electricity consumption of home appliances for stabilization of the electricity supply. However, if information regarding the measured electricity consumption of a user is leaked, serious privacy issues may arise, as such information may be used as a source of data mining of the electricity consumption patterns or life cycles of home residents. In this paper, we propose a data transaction protocol for privacy protection in a smart grid. In addition, a power company cannot decrypt an encrypted home appliance ID without the user's password.

A Study on the Elderly Households' Needs for Housing Modification (노인가구 특성에 따른 주거개조요구에 관한 연구)

  • Lee, Kwang-Soo;Park, Soo-Been
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.04a
    • /
    • pp.278-283
    • /
    • 2009
  • This study aims to figure out the old people's needs for modification of their housing to maintain an independent lifestyle despite their health status and living arrangements. The total of 438 residents take part in the questionnaire survey research through the quota sampling method grouped by age (60-64 group, 65-69 group, 70-74 group, and over 75 group), sex (male and female), and house type (apartment houses and others). The results are as follows. (1) The old people's most inspired modification needs in interior spaces are remodeling the heating controls in the living room and the bedroom, ventilation facilities and storage spaces in the kitchen, non-slip tile flooring and ventilation facilities in bathroom, an easy door-lock, non-slip tile flooring, a draft cut-off, and storage spaces in the entrance. Besides they require emergency alarm, easy door and window locks, fire and gas alarm, and furniture with easy handling. It is necessary to supply the aged with the appropriate heating controls for their sensitivity to heat, with enough storage spaces for the increased possessions, and with diverse safety systems reflected blunting of mobility and sensibility. (2) As they grow older, the aged require more remote controls and safety facilities such as emergency alarm, easy locks and furniture with distinguishable colors. Male elderly is more concerned with safety, while female elderly do with convenience due to their different time spending in the house. The elderly residents in the apartment houses require the heating controls, a draft cut-off, and storage space less than other types of houses. Thus modification of the heating controls, a draft cut-off, and storage space are regards as basic needs for the elderly residents in non-apartment houses.

  • PDF

Study on Optimization of Operation in household Fuel Cell System (가정용 연료전지 시스템의 요금 분석을 통한 최적 운전 방법 검토)

  • Park, Deaheum;Cha, Kwangseok;Jo, Hokyoo;Jung, Younguan
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.6
    • /
    • pp.598-603
    • /
    • 2012
  • Despite the high efficiency and eco-friendly of Household Fuel Cell System it has hardly obtained popularity mainly due to its high prices. In order to encourage use of the system prices and operational expenses need to become economical. In this study, optimization through simulation was conducted to find out the optimal operational condition. As a result of simulation the system is operated with DSS operation from 5 O'clock to 19 O'clock for 14 hours at the constant output of 0.4kW to maximize reduction of energy rate. this DSS operation condition can reduce 200,000 won of energy rates in 35 pyoung apartment for a year. And, we can know that starting time of DSS operation don't effect to energy rates through the simulation. Furthermore, the household fuel cell system with the rated output of 1kW should be reduced to 0.4 - 0.6kW which can promote installation of household Fuel Cell System. Now, the household fuel cell system don't have been used widely due to economical efficiency. but, in the near future, Fuel Cell will be used to household by decrease of LNG price caused by development of shale gas.

A Study of Energy Management Guide Using Building Energy Map By BIM -Focusing on Suseonggu Daegu city- (BIM을 이용한 건축물별 에너지 지도 작성 및 에너지 관리방안에 관한 연구 -대구시 수성구를 중심으로-)

  • Kim, Hye-Mi;Hong, Won-Hwa
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.06a
    • /
    • pp.81-82
    • /
    • 2010
  • Emerging global economic growth and increasing demand for energy supply and demand imbalance and the excessive use of fossil fuels existing the rapidly increasing greenhouse gas emissions and resource depletion of global energy crisis is deepening. Accordingly, improvement of living conditions around and through the natural ecological preservation and the need for a comfortable life for the meeting the importance of energy management and consumption are emerging. Many in the field of architecture for energy-saving measures, and conducting research and verify green building energy ratings and low energy for the initial steps that can be verified from the Energy Performance of BIM(Building Information Model) technology development and commercialization of the building energy to predict the performance objectively, leverages technology in an existing building energy performance analysis and possibilities of BIM-based green building process presented. In this study, using BIM for existing building energy performance analysis of data collected through the objective and efficient management of the energy it consumes Mapping and Management Plan is to research on.

  • PDF

Reuse and Remediation of Closed Landfill in Korea

  • Shin, Chan-ki
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2002.04a
    • /
    • pp.91-99
    • /
    • 2002
  • A recent survey investigated that there were over one thousand un-controlled closed landfills(1,072 sites) in Republic of Korea. Most of these landfills were constructed before 1986. Waste management act were not promulgated at that time, so they usually do not have dranage system and leachate treatment facility. Also, considerable attention has been received to landfill leachate pollution, leachate has an adverse impact on the surrounding environment such as soil, groundwater, and water supply source. According to the result of survey for closed landfill management, it was reported that 875 sites out of 1,072sites(81.6%) have no leachate treatment facility and 630 sites out of 1,072sites(58.7%) have been used for farm lands and residence. Consequently it is hard to do postclosure care continuously in most of cases and these uncontrolled landfills have contaminated farm lands and residence. The average age of these landfills are ranged mostly between 2 to 15 years. Much time and advanced technology are needed to remediate these uncontrolled landfills, therefore the survey for present status of closed landfill sites is required and suitable treatment processes should be prepared. With this point of view, We has been investigated to find out the present status of closed landfill, problems of post management and discussed plans for remediation and reuse. Remedial actions of un-controlled landfill have been carried out the many cities since 1997 upto now. Most frequently applied technology were reuse after excavation and there were several cases to capping in the surface of landfill and to construct subsurface barriers. It is considered that landfills in use have a possibility not to be controlled because of inadequate construction and improper management. Therefore remediation of uncontrolled landfills and recovery technology should be develop continuously Especially, it has been expected that resource technology of landfill gas as a energy has some advantages in controlling odors in the site area and accelerating stabilization of landfills with the energy.

  • PDF

Computational Thermo-Fluid Analysis for the Effects of Helium Injection Methods on Glass Fiber Cooling Process in an Optical Fiber Manufacturing System (광섬유 냉각장치의 헬륨 주입기 설계를 위한 전산열유동해석)

  • Park, Shin;Kim, Kyoungjin;Kim, Dongjoo;Park, Junyoung;Kwak, Ho Sang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.124-130
    • /
    • 2014
  • In a mass manufacturing system of optical fibers, the sufficient cooling of glass fibers freshly drawn from a draw furnace is essential, asinadequately cooled glass fibers can lead to poor resin coating on the fiber surface and possibly fiber breakage during the process. In order to improve fiber cooling at a high drawing speed, it is common to use a helium injection into a glass fiber cooling unit in spite of the high cost of the helium supply. The present numerical analysis carried out three-dimensional thermo-fluid computations of the cooling gas flow and heat transfer on moving glass fiber to determine the cooling performance of glass fiber cooling depending on the method of helium injection. The results showed that afront injection of helium is most effective compared to a uniform or rear injection for reducing air entrainment into the unit and thus cooling the glass fibers at a high fiber drawing speed. However, above a certain amount of injected helium, there was no more increase of the cooling effect regardless of the helium injection method.

Development of Remote Field Eddy Current Pipeline Inspection System (원격장 와전류 배관 탐상 시스템 개발)

  • Jeong, Jin-Oh;Yi, Jae-Kyung;Kim, Hyoung-Jean
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.556-560
    • /
    • 2001
  • Remote field eddy current testing (RFECT) with through-wall transmission characteristic is being applied to pipes ranging from small tubes of heat exchanger to natural gas supply pipelines. Cast iron pipes with nominal diameter of 100mm are used primarily as the waterline pipes. The leakage of water occurs due to defects in the pipes caused by vibration of automobiles and corrosion. But, the use of direct inspection methods such as insertion of inspection equipment inside the pipelines has been limited due to its lack of economical efficiency. Economical development of inspection equipments is possible since RFECT method can be easily employed for system integration and quantitative evaluation of both inside and outside defects. In this study, the development of underground pipeline inspection system was tarried out by using RFECT method in consideration of the characteristics of waterline network. This paper specifically describes the design and production of RFECT pipeline inspection pig using centralizer mechanism, development of remote field eddy current signal acquisition and processing software, and review of RFECT system operation procedures.

  • PDF

Microfabrication of Submicron-size Hole on the Silicon Substrate using ICP etching

  • Lee, J.W.;Kim, J.W.;Jung, M.Y.;Kim, D.W.;Park, S.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.79-79
    • /
    • 1999
  • The varous techniques for fabrication of si or metal tip as a field emission electron source have been reported due to great potential capabilities of flat panel display application. In this report, 240nm thermal oxide was initially grown at the p-type (100) (5-25 ohm-cm) 4 inch Si wafer and 310nm Si3N4 thin layer was deposited using low pressure chemical vapor deposition technique(LPCVD). The 2 micron size dot array was photolithographically patterned. The KOH anisotropic etching of the silicon substrate was utilized to provide V-groove formation. After formation of the V-groove shape, dry oxidation at 100$0^{\circ}C$ for 600 minutes was followed. In this procedure, the orientation dependent oxide growth was performed to have a etch-mask for dry etching. The thicknesses of the grown oxides on the (111) surface and on the (100) etch stop surface were found to be ~330nm and ~90nm, respectively. The reactive ion etching by 100 watt, 9 mtorr, 40 sccm Cl2 feed gas using inductively coupled plasma (ICP) system was performed in order to etch ~90nm SiO layer on the bottom of the etch stop and to etch the Si layer on the bottom. The 300 watt RF power was connected to the substrate in order to supply ~(-500)eV. The negative ion energy would enhance the directional anisotropic etching of the Cl2 RIE. After etching, remaining thickness of the oxide on the (111) was measured to be ~130nm by scanning electron microscopy.

  • PDF

Study of a Photovoltaic System as an Emergency Power Supply for Offshore Plant Facilities (해양플랜트 설비의 비상전원공급을 위한 태양광 발전시스템 연구)

  • Choi, Gun Hwan;Lee, Byung Ho;Jung, Rho-Taek;Shin, Kyubo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.279-286
    • /
    • 2018
  • The use of eco-friendly energy in the offshore plant system is expanding because conventional generators are operated by fossil fuel or natural gas. Eco-friendly energy, which replaces existing power generation methods, should be capable of generating the power for lighting protection equipment, airborne fault indication, parameter measurement, and others. Most of the eco-friendly energy used in offshore plant facilities is solar and wind power. In the case of using photovoltaic power, because the structure must be constructed based as flat solar panels, it can be damaged easily by the wind. Therefore, there is a need for a new generation system composed of a spherical structure that does not require a separate structure and is less influenced by the wind. Considering these characteristics, in this study we designed, fabricated, and tested a unit that could provide the most efficient spherical photovoltaic power generation considering wind direction and wind pressure. Our test results indicated that the proposed system reduced costs because it did not require any separate structure, used eco-friendly energy, reduced carbon dioxide emissions, and expanded the proportion of eco-friendly energy use by offshore plant facilities.