• 제목/요약/키워드: Gas Sensors

검색결과 1,074건 처리시간 0.048초

Hydrogen sensor of SWNT-PdOx system using the vacuum filtering deposition method (진공여과증착법을 이용한 SWNT-PdOx계 수소센서)

  • Kim, Il-Jin;Park, Kee-Bae
    • Journal of Sensor Science and Technology
    • /
    • 제19권2호
    • /
    • pp.87-91
    • /
    • 2010
  • Hydrogen gas sensors were fabricated using $PdO_x$ loaded with SWNTs. The nanoparticle powders of $SWNT_s-PdO_x$ composite were deposited on Si wafer substrates by a vacuum filtering deposition method. The fabricated sensors were tested against hydrogen gas. The composition ratio that exhibited the highest response to hydrogen gases was SWNTs : $PdO_x$ = 98 : 2 in wt% ratio at operating temperature of about $150^{\circ}C$. The response and recovery times were shorter than 1.0 min. in presence of 1000 ppm hydrogen.

Sensing Properties of Au Nanoparticle-Functionalized ZnO Nanowires by γ-Ray Radiolysis

  • Katoch, Akash;Choi, Sun-Woo;Byun, Joon-Hyuk;Kim, Sang-Sub
    • Journal of Sensor Science and Technology
    • /
    • 제21권3호
    • /
    • pp.180-185
    • /
    • 2012
  • ${\gamma}$-ray radiolysis was used to functionalize networked ZnO nanowires with Au nanoparticles. The networked ZnO nanowires were prepared through a vapor phase selective growth method. The sensing performances of the Au-functionalized ZnO nanowires were investigated in terms of $NO_2$, CO and benzene gases. The Au-funtionalized ZnO nanowire sensors showed an applicable, reliable capability to detect the gases, indicating their potential in chemical gas sensors.

Fabrication of a Superhydrophobic Water-Repellent Mesh for Underwater Sensors

  • An, Taechang
    • Journal of Sensor Science and Technology
    • /
    • 제22권2호
    • /
    • pp.100-104
    • /
    • 2013
  • A superhydrophobic mesh is a unique structure that blocks water, while allowing gases, sound waves, and energy to pass through the holes in the mesh. This mesh is used in various devices, such as gas- and energy-permeable waterproof membranes for underwater sensors and electronic devices. However, it is difficult to fabricate micro- and nano-structures on three-dimensional surfaces, such as the cylindrical surface of a wire mesh. In this research, we successfully produced a superhydrophobic water-repellent mesh with a high contact angle (> $150^{\circ}$) for nanofibrous structures. Conducting polymer (CP) composite nanofibers were evenly coated on a stainless steel mesh surface, to create a superhydrophobic mesh with a pore size of $100{\mu}m$. The nanofiber structure could be controlled by the deposition time. As the deposition time increased, a high-density, hierarchical nanofiber structure was deposited on the mesh. The mesh surface was then coated with Teflon, to reduce the surface energy. The fabricated mesh had a static water contact angle of $163^{\circ}$, and a water-pressure resistance of 1.92 kPa.

A Study on the PD Detection Using a UHF Method in GIS (GIS에 있어서 UHF법을 이용한 부분방전 검출에 대한 연구)

  • Yoon, J.Y.;Jung, K.J.;Choi, J.G.;Kim, K.H.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2063-2065
    • /
    • 1999
  • PD pulses have about one nanosecond rise time in the $SF_6$ gas insulation. These pulses propagate through GIS chamber to PD sensors in the form of the electromagnetic radiation. In this paper, we investigated the characteristics of disc sensors and monopole antenna, by putting high frequency signals into the test cell in $SF_6$ gas by means of a Ins rise time pulse generator and 60Hz power supply respectively. Also, we measured PD quantity from the needle electrode and the location effect of output terminal beneath the disk sensors.

  • PDF

Fabrication of Semiconductor Gas Sensors and their Electrical Characteristics (반도체 가스 검지소자의 제조 및 그의 전기적 특성)

  • 김기완;이덕동
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • 제15권5호
    • /
    • pp.46-50
    • /
    • 1978
  • Three types of SnO2 based semiconductor gas sensors sensitive to propane, alcohol, carbon monoidxe and acetone have been fabricated. Adding about 0.3wt.% PdCl2 or SrCO3 to SnO2 improved the sentivity. The devices were tired for one hour in air in the temperarure range of $600^{\circ}C$ to 1, 00$0^{\circ}C$. An electrical warning system using the fabricated sensors is suggested.

  • PDF

Position-Selective Metal Oxide Nanostructures using Atomic Thin Carbon Layer for Hydrogen Gas Sensors

  • Yu, Hak Ki
    • Journal of Sensor Science and Technology
    • /
    • 제29권6호
    • /
    • pp.369-373
    • /
    • 2020
  • A hydrogen sensor was fabricated by utilizing a bundle of metal oxide nanostructures whose growth positions were selectively controlled by utilizing graphene, which is a carbon of atomic-unit thickness. To verify the reducing ability of graphene, it was confirmed that the multi-composition metal oxide V2O5 was converted into VO2 on the graphene surface. Because of the role of graphene as a reducing catalyst, it was confirmed that ZnO and MoO3 nanostructures were grown at high density only on the graphene surface. The fabricated gas sensor showed excellent sensitivity.

A Study on the Applicability of Movable Sensors That Can be Attached to Safety Helmets to Protect Construction Site Safety Management (건설현장 안전관리를 위한 안전모 부착가능 이동식 센서 적용성 연구)

  • Kim, Gyeong-Hyeon;Kim, Do-Keun;Jang, Se-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.119-120
    • /
    • 2023
  • This paper investigates the applicability of movable sensors that can be attached to hard hats to protect construction site safety management to prevent safety accidents based on accident case studies in the field of construction engineering and the gas sensors currently used in construction sites. We would like to propose MQ-2, a standard Arduino gas sensor.

  • PDF

Substantial Enhancement of the Response and Sensing Speed of WO3 Nanotubes Toward NO2 Gas by Au-functionalization

  • Ko, Hyunsung;Park, Sangbo;Hong, Taeseop;Park, Sunghoon;Lee, Chongmu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.369.1-369.1
    • /
    • 2014
  • Au-functionalized $WO_3$ nanotubes were synthesized using ZnO nanowire templates. Transmission electron microscopy revealed the Au nanoparticles on the outer surface of a typical $WO_3$ nanotube ranged from 5 to 25 nm. The multiple networked Au-functionalized $WO_3$ nanotube sensors showed responses of 820-3, 924% in the $NO_2$ concentration range of 1-5 ppm at $300^{\circ}C$. These responses were approximately 5-12 fold higher than those observed for pristine $WO_3$ nanotube sensors over the same $NO_2$ concentration range. A model describing the gas sensing mechanism of Au-functionalized $WO_3$ nanotubes is discussed.

  • PDF

Fabrication and Characteristics of Surface-Acoustic-Wave Sensors for Detecting $NO_2$ GaS ($NO_2$ 가스 감지를 위한 표면탄성파 센서의 제작 및 특성)

  • Choi, D.H.
    • Journal of Sensor Science and Technology
    • /
    • 제8권2호
    • /
    • pp.108-114
    • /
    • 1999
  • Surface acoustic wave (SAW) device is very attractive for gas sensor applications because of their small size, low cost, high sensitivity, and good reliability. A dual delay line surface acoustic wave $NO_2$ gas sensors have been designed and fabricated on the $LiTaO_3$ piezoelectric single crystal substrate. The capacitance of the fabricated IDTs was 326.34pF at the frequency of 79.3MHz. The maximum reflection loss of the impedence-matched IDTs was -16.74dB at the frequency of 79.3MHz. The SAW oscillator was constructed and the stable oscillation was obtained by controlling the gain of rf amplifier properly. The oscillation frequency shift of the SAW oscillator to the $NO_2$ gas was 28Hz/ppm.

  • PDF

Development of alcohol gas sensors measurable at room temperature (상온에서 측정 가능한 음주 측정용 알코올 가스 센서)

  • Jeon, Byung-Hyun;Lee, Ju-Hyuk;Kim, Seong-Jean;Lee, Cheol-Jin;Choi, Bok-Gil
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.3265-3267
    • /
    • 1999
  • Capacitance-type alcohol gas sensors using porous silicon (PS) layer as sensitive film were fabricated to measure low alcohol gas concentration. Though sensors using porous silicon layer have show high sensitivity by large internal surface area, there is still much room for improvement to measure low breath alcohol concentration especially at room temperature. In this work, to discuss the response properties against exposure to organic vapor for breath alcohol measurements on the basis of experimental results. we measured the variation of the capacitance for the range of 0 to 0.5% alcohol concentration, and observed the improvement of sensitivity by illumination of UV light. In addition, the effect of CO2 and N2 gases involved commonly in exhaling breath was estimated, and the same procedure against methanol vapor was executed to compare qualitatively with the capacitance characteristics by alcohol vapor.

  • PDF