• Title/Summary/Keyword: Gas Sensors

Search Result 1,058, Processing Time 0.026 seconds

Electrospun Metal Oxide Composite Nanofibers Gas Sensors: A Review

  • Abideen, Zain Ul;Kim, Jae-Hun;Lee, Jae-Hyoung;Kim, Jin-Young;Mirzaei, Ali;Kim, Hyoun Woo;Kim, Sang Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.366-379
    • /
    • 2017
  • Nanostructured materials have attracted considerable research interest over the recent decades because of their potential applications in nanoengineering and nanotechnology. On the other hand, the developments in nanotechnology are strongly dependent on the availability of new materials with novel and engineered morphologies. Among the novel nanomaterials reported thus far, composite nanofibers (NFs) have attracted considerable attention in recent years. In particular, metal oxide NFs have great potential for the development of gas sensors. Highly sensitive and selective gas sensors can be developed by using composite NFs owing to their large surface area and abundance of grain boundaries. In composite NFs, gas sensing properties can be enhanced greatly by tailoring the conduction channel and surface properties by compositional modifications using the synergistic effects of different materials and forming heterointerfaces. This review focuses on the gas sensing properties of composite NFs synthesized by an electrospinning (ES) method. The synthesis of the composite NFs by the ES method and the sensing mechanisms involved in different types of composite NFs are presented along with the future perspectives of composite NFs.

Classification of NOVCs and AVOCS for Healing Substance Measurement System Based on Gas Sensors Array in Forest Environment (가스센서 어레이를 이용한 산림환경 내 치유물질 측정시스템을 통한 자연적 휘발성 유기화합물(NVOCs)과 인위적 휘발성 유기화합물(AVOCs) 분류)

  • Joon-Boo Yu;Hyung-Gi Byun
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.95-99
    • /
    • 2023
  • Forest healing is an activity that enhances immunity and human health using various elements of nature, such as fragrance and scenery. Particularly, phytoncide composed of terpene, a natural volatile substance emitted by forest plants, activates the immune function and is an important raw material in health-related products, such as antibacterial and insect repellents. Moreover, phytoncide is used as a measure to evaluate the impact of the forest atmosphere on the human body. This study aims to implement a highly sensitive gas sensor system that can measure phytoncide in real-time, which is an essential element for realizing a forest healing environment. A gas generation apparatus was implemented by using an adsorption tube in consideration of filed applicability in a laboratory atmosphere to enable the measurement of α-pinene and limonene, which are among the main components of phytoncide. Throughout the experimental trials, the sensitivity of gas sensor arrays to α-pinene and limonene was confirmed. In addition, the classification results demonstrated the AVOCs and NVOCs can be well discriminated using PCA. The primary results confirmed the possibility of developing a high-sensitivity gas sensor system for phytoncide sensing in real time.

Fabrication of C2H2 Gas Sensors Based on Ag-Doped Hierarchical ZnO Nanostructures and Their Characteristics (Ag가 도핑된 계층적 ZnO 나노구조 기반 C2H2 가스센서의 제작과 그 특성)

  • Lee, Kwan-Woo;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.397-401
    • /
    • 2014
  • This paper describes the fabrication and characteristics of $C_2H_2$ gas sensor based on Ag-doped hierarchical ZnO nanostructures. In this work, a pure hierarchical ZnO structure was prepared using a simple hydrothermal method, and Ag nanoparticles doped the hierarchical ZnO structure were uniformly synthesized through photochemical route. The synthesized samples were characterized by SEM, TEM, EDS, XRD and PL spectra. Average size of prepared ZnO structures was around $2{\sim}3{\mu}m$ and showed highly uniform. The average size of Ag nanoparticles was 70 nm. The gas sensing properties of as-prepared products were investigated using resistivity-type gas sensors. 5 at% Ag-doped ZnO based sensors exhibited good performances for $C_2H_2$ gas in comparison with the un-doped one. The sensor based on Ag-doped hierarchical ZnO structures had linear response property from 5~1000 ppm of $C_2H_2$ concentration at working temperature of $200^{\circ}C$. The response values with 100 ppm $C_2H_2$ at $200^{\circ}C$ were 10% and 75% for pure and 5 at% Ag-doped hierarchical ZnO nanostructures, respectively. Moreover, the device showed excellent selectivity towards to $C_2H_2$ gas at optimal working temperature of $200^{\circ}C$.

DNA-functionalized single-walled carbon nanotube-based sensor array for gas monitoring

  • Zhang, Wenjun;Liu, Yu;Wang, Ming. L
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.73-95
    • /
    • 2013
  • Nine deoxyribonucleic acid (DNA) sequences were used to functionalize single-walled carbon nanotube (SWNT) sensors to detect the trace amount of methanol, acetone, and HCl in vapor. DNA 24 Ma (24 randomly arranged nitrogenous bases with one amine at each end of it) decorated SWNT sensor and DNA 24 A (only adenine (A) base with a length of 24) decorated SWNT sensor have demonstrated the largest sensing responses towards acetone and HCl, respectively. On the other hand, for the DNA GT decorated SWNT sensors with different sequence lengths, the optimum DNA sequence length for acetone and HCl sensing is 32 and 8, separately. The detection of methanol, acetone, and HCl have identified that DNA functionalized SWNT sensors exhibit great selectivity, sensitivity, and repeatability with an accuracy of more than 90%. Further, a sensor array composed of SWNT functionalized with various DNA sequences was utilized to identify acetone and HCl through pattern recognition. The sensor array is a combination of four different DNA functionalized SWNT sensors and two bare SWNT sensors (work as reference). This wireless sensing system has enabled real-time gas monitoring and air quality assurance for safety and security.

Metal Oxide Nanocolumns for Extremely Sensitive Gas Sensors

  • Song, Young Geun;Shim, Young-Seok;Han, Soo Deok;Lee, Hae Ryong;Ju, Byeong-Kwon;Kang, Chong Yun
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.184-188
    • /
    • 2016
  • Highly ordered $SnO_2$ and NiO nanocolumns have been successfully achieved by glancing-angle deposition (GLAD) using an electron beam evaporator. Nanocolumnar $SnO_2$ and NiO sensors exhibited high performance owing to the porous nanostructural effect with the formation of a double Schottky junction and high surface-to-volume ratios. When all gas sensors were exposed to various gases such as $C_2H_5OH$, $C_6H_6$, and $CH_3COCH_3$, the response of the highly ordered $SnO_2$ nanocolumn were over 50 times higher than that of the $SnO_2$ thin film. This work will bring broad interest and create a strong impact in many different fields owing to its particularly simple and reliable fabrication process.

Semiconducting ZnO Nanofibers as Gas Sensors and Gas Response Improvement by $SnO_2$ Coating

  • Moon, Jae-Hyun;Park, Jin-Ah;Lee, Su-Jae;Zyung, Tae-Hyoung
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.636-641
    • /
    • 2009
  • ZnO nanofibers were electro-spun from a solution containing poly 4-vinyl phenol and Zn acetate dihydrate. The calcination process of the ZnO/PVP composite nanofibers brought forth a random network of polycrystalline wurtzite ZnO nanofibers of 30 nm to 70 nm in diameter. The electrical properties of the ZnO nanofibers were governed by the grain boundaries. To investigate possible applications of the ZnO nanofibers, their CO and $NO_2$ gas sensing responses are demonstrated. In particular, the $SnO_2$-deposited ZnO nanofibers exhibit a remarkable gas sensing response to $NO_2$ gas as low as 400 ppb. Oxide nanofibers emerge as a new proposition for oxide-based gas sensors.

Sensing characteristics of Polypyrrole-based methanol sensors preparedbyin-situ vapor state polymerization

  • Linshu Jiang;Jun, Hee-Kwon;Hoh, Yong-Su;Lee, Duk-Dong;Huh, Jeung-Soo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.137-137
    • /
    • 2003
  • Conducting PPy/PVA composite and pure PPy gas sensors were prepared by in-situ vaporstate polymerization method in a vaporization chamber under N2 condition, by exposing the pre-coated electrode with PVA/FeC13 to distilled pyrrole monomer. The various electrical sensing behaviors of both types of sensors were systematically investigated by a flow measuring system including mass flow controller (MFC) and bubbling bottle. The FT-Raman spectroscopy of vapor state polymerized PPy was identical to that of chemically polymerized PPy, confirming the same chemical structure. Both types of sensors had positive sensitivity when exposed to methanol gas. The sensitivity varied linearly with gas concentration in the range of 50ppm to 1059ppm. The detection limit of PPy/PVA sensor was believed to be as low as 10ppm. The sensitivity of PPy/PVA composite sensor was higher than that of pure PPy sensor. Both the response time and recovery time of PPy/PVA composite sensors were longer than those of pure PPy sensors. The thickness of the sensing film affected the sensitivity this way that the sensor having thinner film had higher sensitivity, indicating that the resistance of polymer film involved in the sensing behavior was bulk resistance rather than surface resistance. The reproducibility of PPy/PVA composite sensor was excellent during eight on-off cycles by switching between N2 and 3000ppm methanol gas. The sensitivity of PPy/PVA composite sensor was only maintained for two weeks, while the sensitivity of pure PPy sensor was maintained over two months.

  • PDF

Gas sensing characteristics of thin film SnO2 sensors with different pretreatments (예비 처리 방법에 따른 박막 SnO2 센서의 가스 감응 특성)

  • Yun, Kwang-Hyun;Kim, Jong-Won;Rue, Gi-Hong;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.309-316
    • /
    • 2006
  • The $SnO_{2}$ thin film sensors were fabricated by a thermal oxidation method. $SnO_{2}$ thin film sensors were treated in $N_{2}$ atmosphere. The sensors with $O_{2}$ treatment after $N_{2}$ treatment showed 70 % sensitivity for 1 ppm $H_{2}S$ gas, which is higher than the sensors with only $O_{2}$ treatment. The Ni metal was evaporated on Sn thin film on the $Al_{2}O_{3}$ substrate. And the sensor was heated to grow the Sn nanowire in the tube furnace with $N_{2}$ atmosphere. Sn nanowire was thermally oxidized in $O_{2}$ environments. The sensitivity of $SnO_{2}$ nanowire sensor was measured at 500 ppb $H_{2}S$ gas. The selectivity of $SnO_{2}$ nanowire sensor compared with thin film and thick film $SnO_{2}$ was measured for $H_{2}S$, CO, and $NH_{3}$ in this study.

High-sensitivity ZnO gas Sensor with a Sol-gel-processed SnO2 Seed Layer (Sol-Gel 방법으로 제작된 SnO2 seed layer를 적용한 고반응성 ZnO 가스 센서)

  • Kim, Sangwoo;Bak, So-Young;Han, Tae Hee;Lee, Se-Hyeong;Han, Ye-ji;Yi, Moonsuk
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.420-426
    • /
    • 2020
  • A metal oxide semiconductor gas sensor is operated by measuring the changes in resistance that occur on the surface of nanostructures for gas detection. ZnO, which is an n-type metal oxide semiconductor, is widely used as a gas sensor material owing to its high sensitivity. Various ZnO nanostructures in gas sensors have been studied with the aim of improving surface reactions. In the present study, the sol-gel and vapor phase growth techniques were used to fabricate nanostructures to improve the sensitivity, response, and recovery rate for gas sensing. The sol-gel method was used to synthesize SnO2 nanoparticles, which were used as the seed layer. The nanoparticles size was controlled by regulating the process parameters of the solution, such as the pH of the solution, the type and amount of solvent. As a result, the SnO2 seed layer suppressed the aggregation of the nanostructures, thereby interrupting gas diffusion. The ZnO nanostructures with a sol-gel processed SnO2 seed layer had larger specific surface area and high sensitivity. The gas response and recovery rate were 1-7 min faster than the gas sensor without the sol-gel process. The gas response increased 4-24 times compared to that of the gas sensor without the sol-gel method.