DOI QR코드

DOI QR Code

Semiconducting ZnO Nanofibers as Gas Sensors and Gas Response Improvement by $SnO_2$ Coating

  • Moon, Jae-Hyun (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Park, Jin-Ah (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Lee, Su-Jae (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Zyung, Tae-Hyoung (Convergence Components & Materials Research Laboratory, ETRI)
  • Received : 2009.04.01
  • Accepted : 2009.07.20
  • Published : 2009.12.31

Abstract

ZnO nanofibers were electro-spun from a solution containing poly 4-vinyl phenol and Zn acetate dihydrate. The calcination process of the ZnO/PVP composite nanofibers brought forth a random network of polycrystalline wurtzite ZnO nanofibers of 30 nm to 70 nm in diameter. The electrical properties of the ZnO nanofibers were governed by the grain boundaries. To investigate possible applications of the ZnO nanofibers, their CO and $NO_2$ gas sensing responses are demonstrated. In particular, the $SnO_2$-deposited ZnO nanofibers exhibit a remarkable gas sensing response to $NO_2$ gas as low as 400 ppb. Oxide nanofibers emerge as a new proposition for oxide-based gas sensors.

Keywords

References

  1. N. Yamazoe, G. Sakai, and K. Shimanoe, "Oxide Semiconductor Gas Sensors," Catalysis Sur. Asia, vol. 7, 2003, pp. 63-75. https://doi.org/10.1023/A:1023436725457
  2. R. Ramaseshan et al., "Nanostructured Ceramics by Electrospinning," J. Appl. Phys., vol. 102, 2007, pp. 111101-111117. https://doi.org/10.1063/1.2815499
  3. Q. Wan et al., "Fabrication and Ethanol Sensing Characteristics of ZnO Nanowire Gas Sensors," Appl. Phys. Lett., vol. 84, 2004, pp. 3654-3656. https://doi.org/10.1063/1.1738932
  4. Y. Wang et al., "Synthesis and Characterization of Tin Oxide Microfibres Electrospun from a Simple Precursor Solution," Semicond. Sci. Technol., vol. 19 , 2004, pp. 1057-1060. https://doi.org/10.1088/0268-1242/19/8/017
  5. J. Moon et al., "Structure and Electrical Properties of Electrospun ZnO-NiO Mixed Oxide Nanofibers," Current Appl. Phys., vol. 9, 2009, pp. s213-s216. https://doi.org/10.1016/j.cap.2008.12.020
  6. S. Fridrikh et al., "Controlling the Fiber Diameter During Electrospinning," Phys. Rev. Lett., vol. 90, 2003, pp. 144502-144505. https://doi.org/10.1103/PhysRevLett.90.144502
  7. S. Matsushima et al., "Electronic Interaction Between Metal Additives and Tin Dioxide in Tin Dioxide-Based Gas Sensors," Jpn. J. Appl. Phys., vol. 27, 1988, pp. 1798-1802. https://doi.org/10.1143/JJAP.27.1798
  8. S. Kim and J. Maier, "Electrical Properties of ZnO, Nanocrystalline vs. Microcrystalline Ceramics," Electrochem. Solid-State Lett., vol. 6, 2003, pp. J7-J9. https://doi.org/10.1149/1.1613071
  9. J. Lee et al., "Impedance Spectroscopy of Grain Boundaries in Nanophase ZnO," J. Mat. Res., vol. 10, 1995, pp. 2295-2300. https://doi.org/10.1557/JMR.1995.2295
  10. G. Korotcenkov, "Metal Oxides for Solid-State Gas Sensors: What Determines Our Choice-" Mat. Sci. Eng. B, vol. 139, 2007, pp. 1-23. https://doi.org/10.1016/j.mseb.2007.01.044
  11. C. Liangyuan et al., "Synthesis of $SnO-SnO_2$ Nanocomposites by Microemulsion and Sensing Properties for $NO_2$," Sens. Act. B, vol. 134, 2008, pp. 360-366. https://doi.org/10.1016/j.snb.2008.04.040
  12. A. Greiner and J.H. Wendorff, "Functional Self-Assembled Nanofibers by Electrospinning," Adv. Polymer Sci., vol. 219, 2008, pp. 107-171.
  13. D. Li and Y. Xia, "Electrospinning of Nanofibers: Reinventing the Wheel-" Adv. Mat., vol. 16, 2004, pp. 1151-1170. https://doi.org/10.1002/adma.200400719
  14. H.Y. Yu et al., "Nanogap Array Fabrication Using Doubly Clamped Freestanding Silicon Nanowires and Angle Evaporations," ETRI J., vol. 31, no. 4, Aug. 2009, pp. 351-356. https://doi.org/10.4218/etrij.09.0109.0006

Cited by

  1. Pd-doped TiO2 nanofiber networks for gas sensor applications vol.149, pp.1, 2010, https://doi.org/10.1016/j.snb.2010.06.033
  2. Two-dimensional ZnO-NiO macroporous arrays: Fabrication, structure and electrical properties vol.55, pp.22, 2010, https://doi.org/10.1016/j.electacta.2010.05.081
  3. Efficient Reducing Method of Graphene Oxide for Gas Sensor Applications vol.25, pp.None, 2011, https://doi.org/10.1016/j.proeng.2011.12.219
  4. Fabrication of a HCHO gas sensor based on a MEMS heater and inkjet printing vol.60, pp.2, 2009, https://doi.org/10.3938/jkps.60.225
  5. Fast response formaldehyde gas sensor for USN application vol.175, pp.None, 2009, https://doi.org/10.1016/j.snb.2012.01.004
  6. NO2 gas sensing properties of ZnO/ZnS core-shell nanowires vol.63, pp.8, 2009, https://doi.org/10.3938/jkps.63.1595
  7. Semiconductor-Type MEMS Gas Sensor for Real-Time Environmental Monitoring Applications vol.35, pp.4, 2009, https://doi.org/10.4218/etrij.13.1912.0008
  8. Woven Temperature and Humidity Sensors on Flexible Plastic Substrates for E-Textile Applications vol.13, pp.10, 2009, https://doi.org/10.1109/jsen.2013.2257167
  9. Surface characterization and investigation on antibacterial activity of CuZn nanofibers prepared by electrospinning vol.508, pp.None, 2009, https://doi.org/10.1016/j.apsusc.2019.144883
  10. Enhancing room temperature ethanol sensing using electrospun Ag-doped SnO2-ZnO nanofibers vol.31, pp.20, 2009, https://doi.org/10.1007/s10854-020-04276-9