References
- A. Mirzaei, S. G. Leonardi, and G. Neri, "Detection of Hazardous Volatile Organic Compounds (VOCs) by Metal Oxide Nanostructures-Based Gas Sensors: A Review," Ceram. Int., 42 [14] 15119-41 (2016). https://doi.org/10.1016/j.ceramint.2016.06.145
- G. Korotcenkov and B. K. Cho, "Metal Oxide Composites in Conductometric Gas Sensors: Achievements and Challenges," Sens. Actuators, B, 244 182-210 (2017). https://doi.org/10.1016/j.snb.2016.12.117
- I. Fratoddi, I. Venditti, C. Cametti, and M. V. Russo, "Chemiresistive Polyaniline-Based Gas Sensors: A Mini Review," Sens. Actuators, B, 220 534-48 (2015). https://doi.org/10.1016/j.snb.2015.05.107
- A. Mirzaei and G. Neri, "Microwave-Assisted Synthesis of Metal Oxide Nanostructures for Gas Sensing Application: A Review," Sens. Actuators, B, 237 749-75 (2016). https://doi.org/10.1016/j.snb.2016.06.114
- S. S. Varghese, S. Lonkar, K. K. Singh, S. Swaminathan, and A. Abdala, "Recent Advances in Graphene Based Gas Sensors," Sens. Actuators, B, 218 160-83 (2015). https://doi.org/10.1016/j.snb.2015.04.062
- M. Kampa and E. Castanas, "Human Health Effects of Air Pollution," Environ. Pollut., 151 [2] 362-7 (2008). https://doi.org/10.1016/j.envpol.2007.06.012
- I. Simon, N. Barsan, M. Bauer, and U. Weimar, "Micromachined Metal Oxide Gas Sensors: Opportunities to Improve Sensor Performance," Sens. Actuators, B, 73 [1] 1-26 (2001). https://doi.org/10.1016/S0925-4005(00)00639-0
- A. D. McNaught and A. Wilkinson, Compendium of Chemical Terminology; Vol. 1669, pp. 165-66, Blackwell Science, Oxford, 1997.
- G. Eranna, Metal Oxide Nanostructures as Gas Sensing Devices; Vol. 316, pp. 1-2, CRC Press, Boca Raton, 2011.
- V. K. Khanna, Nanosensors: Physical, Chemical, and Biological; Vol. 53, pp. 51-522, CRC Press, Oxford, 2011.
- W. P. Jakubik, "Surface Acoustic Wave-Based Gas Sensors," Thin Solid Films, 520 [3] 986-93 (2011). https://doi.org/10.1016/j.tsf.2011.04.174
- F. Tavoli, N. Alizadeh, "Optical Ammonia Gas Sensor Based on Nanostructure Dye-Doped Polypyrrole," Sens. Actuators, B, 176 761-67 (2013). https://doi.org/10.1016/j.snb.2012.09.013
- C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, and K. C. Singh, "Synthesis of Pd or Pt/Titanate Nanotube and Its Application to Catalytic Type Hydrogen Gas Sensor," Sens. Actuators, B, 128 320-25 (2007). https://doi.org/10.1016/j.snb.2007.06.025
- F. Tebizi-Tighilt, F. Zane, N. Belhaneche-Bensemra, S. Belhousse, S. Sam, and N. Gabouze, "Electrochemical Gas Sensors Based on Polypyrrole-Porous Silicon," Appl. Surf. Sci., 269 180-83 (2013). https://doi.org/10.1016/j.apsusc.2012.10.080
- G. Barochi, J. Rossignol, and M. Bouvet, "Development of Microwave Gas Sensors," Sens. Actuators, B, 157 [2] 374-79 (2011). https://doi.org/10.1016/j.snb.2011.04.059
- M. J. Madou and S. R. Morrison, Chemical Sensing with Solid State Devices; pp. 163-66, Academic Press, New York, 1989.
- A. Mirzaei, K. Janghorban, B. Hashemi, and G. Neri, "Metal-Core@ Metal Oxide-Shell Nanomaterials for Gas-Sensing Applications: A Review," J. Nanopart. Res., 9 [17] 1-36 (2015).
- C. G. B. Garrett and W. H. Brattain, "Physical Theory of Semiconductor Surfaces," Phys. Rev., 99 376-87 (1955). https://doi.org/10.1103/PhysRev.99.376
- W. H. Brattain and C. G. B. Garrett, "Surface Properties of Semiconductors," Physica, 20 885-92 (1954). https://doi.org/10.1016/S0031-8914(54)80200-X
- W. H. Brattain and J. Bardeen, "Surface Properties of Germanium," Bell Syst. Tech. J., 32 1-41 (1953). https://doi.org/10.1002/j.1538-7305.1953.tb01420.x
- A. Bielanski, J. Deren, and J. Haber, "Electric Conductivity and Catalytic Activity of Semiconducting Oxide Catalysts," Nature, 179 668-9 (1957). https://doi.org/10.1038/179668a0
- T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, "A New Detector for Gaseous Components Using Semiconductive Thin Films," Anal. Chem., 34 1502-3 (1962). https://doi.org/10.1021/ac60191a001
- T. Seiyama and S. Kagawa, "Study on a Detector for Gaseous Components Using Semiconductive Thin Films" Anal. Chem., 38 1069-73 (1966). https://doi.org/10.1021/ac60240a031
- N. Taguchi, "Method for Making a Gas-Sensing Element"; US Patent 3,625,756 (December 7, 1971).
- N. Taguchi, "Semiconductor Gas Detecting Device"; US Patent 3,732,519 (May 8, 1973).
- H. J. Kim and J. H. Lee, "Highly Sensitive and Selective Gas Sensors Using p-Type Oxide Semiconductors: Overview," Sens. Actuators, B, 192 607-27 (2014). https://doi.org/10.1016/j.snb.2013.11.005
- S. R. Morrison, "Selectivity in Semiconductor Gas Sensors," Sens. Actuators, B, 12 425-40 (1987). https://doi.org/10.1016/0250-6874(87)80061-6
- N. Yamazoe, Y. Kurokawa, and T. Seiyama, "Effects of Additives on Semiconductor Gas Sensors," Sens. Actuators, B, 4 283-9 (1983). https://doi.org/10.1016/0250-6874(83)85034-3
- N. Yamazoe, "Toward Innovations of Gas Sensor Technology," Sens. Actuators, B, 108 2-14 (2005). https://doi.org/10.1016/j.snb.2004.12.075
- N. Yamazoe, G. Sakai, and K. Shimanoe, "Oxide Semiconductor Gas Sensors," Catal. Surv. Asia, 7 [1] 63-75 (2003). https://doi.org/10.1023/A:1023436725457
- N. Yamazoe, "New Approaches for Improving Semiconductor Gas Sensors," Sens. Actuators, B, 5 7-19 (1991). https://doi.org/10.1016/0925-4005(91)80213-4
- A. Khayatian, S. Safa, R. Azimirad, M. A. Kashi, and S. F. Akhtarianfar, "The Effect of Fe-Dopant Concentration on Ethanol Gas Sensing Properties of Fe Doped ZnO/ZnO Shell/Core nanorods," Phys. E, 84 71-8 (2016). https://doi.org/10.1016/j.physe.2016.05.030
-
X. Kou, C. Wang, M. Ding, C. Feng, X. Li, J. Ma, H. Zhang, and Y. Sun, "Synthesis of Co-Doped
$SnO_2$ Nanofibers and Their Enhanced Gas-Sensing Properties," Sens. Actuators, B, 236 425-32 (2016). https://doi.org/10.1016/j.snb.2016.06.006 -
K. G. Girija, K. Somasundaram, A. Topkar, and R. K. Vatsa, "Highly Selective
$H_2S$ Gas Sensor Based on Cu-Doped ZnO Nanocrystalline Films Deposited by RF Magnetron Sputtering of Powder Target," J. Alloys Compd., 684 15-20 (2016). https://doi.org/10.1016/j.jallcom.2016.05.125 -
M. Epifani, J. Arbiol, E. Pellicer, E. Comini, P. Siciliano, G. Faglia, "Synthesis and Gas-Sensing Properties of Pd-Doped
$SnO_2$ Nanocrystals. A Case Study of a General Methodology for Doping Metal Oxide Nanocrystals," Cryst. Growth Des., 8 [5] 1774-8 (2008). https://doi.org/10.1021/cg700970d -
M. Epifani, T. Andreu, R. Zamani, J. Arbiol, E. Comini, and P. Siciliano, "Pt Doping Triggers Growth of
$TiO_2$ Nanorods: Nanocomposite Synthesis and Gas-Sensing Properties," CrystEngComm, 14 3882-87 (2012). https://doi.org/10.1039/c2ce06690d - V. Dobrokhotov, D. N. Mcilroy, M. G. Norton, A. Abuzir, W. J. Yeh, and I. Stevenson, "Principles and Mechanisms of Gas Sensing by GaN Nanowires Functionalized with Gold Nnanoparticles," J. Appl. Phys., 99 [10] 104302-9 (2006). https://doi.org/10.1063/1.2195420
-
A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, "Enhanced Gas Sensing by Individual
$SnO_2$ Nanowires and Nanobelts Functionalized with Pd Catalyst Particles," Nano Lett., 5 [4] 667-73 (2005). https://doi.org/10.1021/nl050082v - U. Heiz and E. L. Bullock, "Fundamental Aspects of Catalysis on Supported Metal Clusters," J. Mater. Chem., 14 [4] 564-77 (2004). https://doi.org/10.1039/b313560h
- W. C. Conner and J. L. Falconer, "Spillover in Heterogeneous Catalysis," Chem. Rev., 95 [3] 759-88 (1995). https://doi.org/10.1021/cr00035a014
- D. R. Miller, S. A. Akbar, and P. A. Morris, "Nanoscale Metal Oxide-Based Heterojunctions for Gas Sensing: A Review," Sens. Actuators, B, 204 250-72 (2014). https://doi.org/10.1016/j.snb.2014.07.074
- E. Comini, M. Ferroni, V. Guidi, G. Faglia, G. Martinelli, and G. Sberveglieri, "Nanostructured Mixed Oxides Compounds for Gas Sensing Applications," Sens. Actuators, B, 84 26-32 (2002). https://doi.org/10.1016/S0925-4005(02)00006-0
-
D. Barreca, E. Comini, A. P. Ferrucci, A. Gasparotto, C. Maccato, and C. Maragno, "First Example of ZnO-
$TiO_2$ Nanocomposites by Chemical Vapor Deposition: Structure, Morphology, Composition, and Gas Sensing Performances," Chem. Mater., 19 [23] 5642-9 (2007). https://doi.org/10.1021/cm701990f -
C. W. Na, H. S. Woo, I. D. Kim, and J. H. Lee, "Selective Detection of
$NO_2$ and$C_2H_5OH$ Using a$Co_3O_4$ -Decorated ZnO Nanowire Network Sensor," Chem. Commun., 47 [18] 5148-50 (2011). https://doi.org/10.1039/c0cc05256f -
J. Zhang, X. Liu, L. Wang, T. Yang, X. Guo, and S. Wu, "Synthesis and Gas Sensing Pproperties of Alpha-
$Fe_2O^3@ZnO$ Core-Shell Nanospindles," Nanotechnology, 22 [18] 185501-8 (2011). https://doi.org/10.1088/0957-4484/22/18/185501 - A. P. Lee and B. J. Reedy, "Temperature Modulation in Semiconductor Gas Sensing," Sens. Actuators, B, 60 35-42 (1999). https://doi.org/10.1016/S0925-4005(99)00241-5
-
A. Fort, M. Gregorkiewitz, N. Machetti, S. Rocchi, B. Serrano, and L. Tondi, "Selectivity Enhancement of
$SnO_2$ Sensors by Means of Operating Temperature Modulation," Thin Solid Films, 418 [1] 2-8 (2002). https://doi.org/10.1016/S0040-6090(02)00575-8 - M. E. Franke, T. J. Koplin, and U. Simon, "Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter?," Small, 2 [1] 36-50 (2006). https://doi.org/10.1002/smll.200500261
- Y. Shimizu and M. Egashira, "Basic Aspects and Challenges of Semiconductor Gas Sensors," MRS Bull., 24 [6] 18-24 (1999).
- J. H. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, "Extremely Sensitive and Selective Sub-ppm CO Detection by the Synergistic Effect of Au Nanoparticles and Core-Shell Nanowires," Sens. Actuators, B, 249 177-88 (2017). https://doi.org/10.1016/j.snb.2017.04.090
-
A. A. Mane and A. V. Moholkar, "Orthorhombic
$MoO_3$ Nanobelts Based$NO_2$ Gas Sensor," Appl. Surf. Sci., 405 427-40 (2017). https://doi.org/10.1016/j.apsusc.2017.02.055 - L. Xue, W. Wang, Y. Guo, G. Liu, and P. Wan, "Flexible Polyaniline/Carbon Nanotube Nanocomposite Film-Based Electronic Gas Sensors," Sens. Actuators, B, 244 47-53 (2017). https://doi.org/10.1016/j.snb.2016.12.064
-
L. Liu, P. Song, Z. Yang, and Q. Wang, "Highly Sensitive and Selective Trimethylamine Sensors Based on
$WO_3$ Nanorods Decorated with Au Nanoparticles," Phys. E, 90 109-15 (2017). https://doi.org/10.1016/j.physe.2017.03.025 -
J. H. Kim, J. H. Lee, A. Mirzaei, H. W. Kim, and S. S. Kim, "Optimization and Gas Sensing Mechanism of n-
$SnO_2$ -p-$Co_3O_4$ Composite Nanofibers," Sens. Actuators, B, 248 500-11 (2017). https://doi.org/10.1016/j.snb.2017.04.029 - Z. L. Wang, "Characterizing the Structure and Properties of Individual Wire-Like Nanoentities," Adv. Mater., 12 [17] 1295-8 (2000). https://doi.org/10.1002/1521-4095(200009)12:17<1295::AID-ADMA1295>3.0.CO;2-B
- J. D. Prades, R. Jimenez-Diaz, F. Hernandez-Ramirez, S. Barth, A. Cirera, and A. Romano-Rodriguez, "Ultralow Power Consumption Gas Sensors Based on Self-Heated Individual Nanowires," Appl. Phys. Lett., 93 [12] 123110-13 (2008). https://doi.org/10.1063/1.2988265
- E. Comini, C. Baratto, I. Concina, G. Faglia, M. Falasconi, and M. Ferroni, "Metal Oxide Nanoscience and Nanotechnology for Chemical Sensors," Sens. Actuators, B, 179 3-20 (2013). https://doi.org/10.1016/j.snb.2012.10.027
- E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, and G. Sberveglieri, "Quasi-One Dimensional Metal Ooxide Semiconductors: Preparation, Characterization and Application as Chemical Sensors," Prog. Mater. Sci., 54 [1] 1-67 (2009). https://doi.org/10.1016/j.pmatsci.2008.06.003
- Z. U. Abideen, A. Katoch, J. H. Kim, Y. J. Kwon, H. W. Kim, and S. S. Kim, "Excellent Gas Detection of ZnO Nanofibers by Loading with Reduced Graphene Oxide Nanosheets," Sens. Actuators, B, 221 1499-507 (2015). https://doi.org/10.1016/j.snb.2015.07.120
- E. S. Medeiros, G. M. Glenn, A. P. Klamczynski, W. J. Orts, and L. H. Cmattoso, "Solution Blow Spinning: A New Method to Produce Micro- and Nanofibers From Polymer Solutions," J. Appl. Poly. Sci., 113 [4] 2322-30 (2009). https://doi.org/10.1002/app.30275
- N. Li and C. R. Martin, "A High-Rate, High-Capacity, Nanostructured Sn-Based Anode Prepared Using Sol-Gel Template Synthesis," J. Electrochem. Soc., 148 A164-70 (2001). https://doi.org/10.1149/1.1342167
- X. Zhang and Y. Lu, "Centrifugal Spinning: An Alternative Approach to Fabricate Nanofibers at High Speed and Low Cost," Polym. Rev., 54 [4] 677-701 (2014). https://doi.org/10.1080/15583724.2014.935858
- K. L. Niece, J. D. Hartgerink, J. J. J. M. Donners, and S. I. Stupp, "Self-Assembly Combining Two Bioactive Peptide-Amphiphile Molecules into Nanofibers by Electrostatic Attraction," J. Am. Chem. Soc., 125 [24] 7146-7 (2003). https://doi.org/10.1021/ja028215r
- S. Wang, F. Hu, J. Li, S. Zhang, M. Shen, M. Huang, and X. Shi, "Design of Electrospun Nanofibrous Mats for Osteogenic Differentiation of Mesenchymal Stem Cells," Nanomedicine, in press.
- D. Li and Y. Xia, "Electrospinning of Nanofibers: Reinventing the Wheel?," Adv. Mater., 16 [14] 1151-70 (2004). https://doi.org/10.1002/adma.200400719
- R. Ramakrishnan, S. Subramanian, J. Rajan, and S. Ramakrishna, "Nanostructured Ceramics by Electrospinning," J. Appl. Phys., 102 [11] 111101 (2007). https://doi.org/10.1063/1.2815499
- D. H. Reneker and A. L. Yarin, "Electrospinning Jets and Polymer Nanofibers," Polymer, 49 [10] 2387-425 (2008). https://doi.org/10.1016/j.polymer.2008.02.002
- J. Doshi and D. H. Reneker, "Electrospinning Process and Applications of Electrospun Fibers," J. Electrost., 35 [2] 151-60 (1995). https://doi.org/10.1016/0304-3886(95)00041-8
- J. P. F. Lagerwall, J. T. Mccann, E. Formo, G. Scalia, and Y. Xia, "Coaxial Electrospinning of Microfibres with Liquid Crystal in the Core," Chem. Commun., [42] 5420-2 (2008).
- P. D. Dalton, D. Grafahrend, K. Klinkhammer, D. Klee, and M. Moller, "Electrospinning of Polymer Melts: Phenomenological Observations," Polymer, 48 [23] 6823-33 (2007). https://doi.org/10.1016/j.polymer.2007.09.037
- A. V. Bazilevsky, A. L. Yarin, and C. M. Megaridis, "Co-Electrospinning of Core-Shell Fibers Using a Single-Nozzle Technique," Langmuir, 23 [5] 2311-4 (2007). https://doi.org/10.1021/la063194q
- A. L. Yarin, E. Zussman, J. H. Wendorff, and A. Greiner, "Material Encapsulation and Transport in Core-Shell Micro/Nanofibers, Polymer and Carbon Nanotubes and Micro/Nanochannels," J. Mater. Chem., 17 [25] 2585-99 (2007). https://doi.org/10.1039/B618508H
- C. J. Luo, S. D. Stoyanov, E. Stride, E. Pelan, and M. Edirisinghe, "Electrospinning Versus Fibre Production Methods: From Specifics to Technological Convergence," Chem. Soc. Rev., 41 [13] 4708-35 (2012). https://doi.org/10.1039/c2cs35083a
- S. Chigome and N. Torto, "A Review of Opportunities for Electrospun Nanofibers in Analytical Chemistry," Anal. Chim. Acta, 706 [1] 25-36 (2011). https://doi.org/10.1016/j.aca.2011.08.021
- S. Thenmozhi, N. Dharmaraj, K. Kadirvelu, and H. Y. Kim, "Electrospun Nanofibers: New Generation Materials for Advanced Applications," Mater. Sci. Eng., B, 217 36-48 (2017). https://doi.org/10.1016/j.mseb.2017.01.001
- A. Greiner and J. H. Wendorff, "Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers," Angew. Chem., Int. Ed., 46 [30] 5670-703 (2007). https://doi.org/10.1002/anie.200604646
- D. Li, J. T. Mccann, Y. Xia, and M. Marquez, "Electrospinning: A Simple and Versatile Technique for Producing Ceramic Nanofibers and Nanotubes," J. Am. Ceram. Soc., 89 [6] 1861-9 (2006). https://doi.org/10.1111/j.1551-2916.2006.00989.x
- B. Sun, Y. Z. Long, Z. J. Chen, S. L. Liu, H. D. Zhang, J. C. Zhang, and W. P. Han, "Recent Advances in Flexible and Stretchable Electronic Devices via Electrospinning," J. Mater. Chem. C, 2 [7] 1209-19 (2014). https://doi.org/10.1039/C3TC31680G
- W. E. Teo and S. Ramakrishna, "A Review on Electrospinning Design and Nanofibre Assemblies," Nanotechnology, 17 [14] R89 (2006). https://doi.org/10.1088/0957-4484/17/14/R01
- R. Kessick, J. Fenn, and G. Tepper, "The Use of AC Potentials in Electrospraying and Electrospinning Processes," Polymer, 45 [9] 2981-4 (2004). https://doi.org/10.1016/j.polymer.2004.02.056
- Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, "A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites," Compos. Sci. Technol., 63 [15] 2223-53 (2003). https://doi.org/10.1016/S0266-3538(03)00178-7
- A. L. Yarin, S. Koombhongse, and D. H. Reneker, "Taylor Cone and Jetting From Liquid Droplets in Electrospinning of Nanofibers," J. Appl. Phys., 90 [9] 4836-46 (2001). https://doi.org/10.1063/1.1408260
- M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, "Electrospinning and Electrically Forced Jets. I. Stability Theory," Phys. Fluids, 13 [8] 2201-20 (2001). https://doi.org/10.1063/1.1383791
- X. Lu, C. Wang, and Y. Wei, "One-Dimensional Composite Nanomaterials: Synthesis by Electrospinning and Their Applications," Small, 5 [21] 2349-70 (2009). https://doi.org/10.1002/smll.200900445
- A. Katoch, S. W. Choi, and S. S. Kim, "Nanograins in Electrospun Oxide Nanofibers," Met. Mater. Int., 21 [2] 213-21 (2015). https://doi.org/10.1007/s12540-015-4319-8
- A. Katoch, G. J. Sun, S. W. Choi, J. H. Byun, and S. S. Kim, "Competitive Influence of Grain Size and Crystallinity on Gas Sensing Performances of ZnO Nanofibers," Sens. Actuators, B, 185 411-6 (2013). https://doi.org/10.1016/j.snb.2013.05.030
-
A. Katoch, J. H. Kim, and S. S. Kim, "Significance of the Nanograin Size on the
$H_2S$ -Sensing Ability of CuO-$SnO_2$ Composite Nanofibers," J. Sens., 2015 1-7 (2015). - A. Katoch, S. W. Choi, G. J. Sun, H. W. Kim, and S. S. Kim, "Mechanism and Prominent Enhancement of Sensing Ability to Reducing Gases in p/n Core-Shell Nanofiber," Nanotechnology, 25 175501-8 (2014). https://doi.org/10.1088/0957-4484/25/17/175501
-
J. Y. Park, S. W. Choi, J. W. Lee, C. Lee, and S. S. Kim, "Synthesis and Gas Sensing Properties of
$TiO_2$ -ZnO Core-Shell Nanofibers," J. Am. Ceram. Soc., 92 [11] 2551-54 (2009). https://doi.org/10.1111/j.1551-2916.2009.03270.x -
A. Katoch, J. H. Kim, and S. S. Kim, "
$TiO_2$ /ZnO Inner/Outer Double-Layer Hollow Fibers for Improved Detection of Reducing Gases," ACS Appl. Mater. Interfaces, 6 [23] 21494-9 (2014). https://doi.org/10.1021/am506499e -
Z. L. Wang, Z. Li, J. Sun, H. Zhang, W. Wang, W. Zheng, and C. Wang, "Improved Hydrogen Monitoring Properties Based on p-NiO/n-
$SnO_2$ Heterojunction Composite Nanofibers," J. Phys. Chem. C, 114 [13] 6100-5 (2010). https://doi.org/10.1021/jp9100202 -
X. J. Zhang and G. J. Qiao, "High Performance Ethanol Sensing Films Fabricated From ZnO and
$In_2O_3$ Nanofibers with a Double-Layer Structure," Appl. Surf. Sci., 258 [17] 6643-47 (2012). https://doi.org/10.1016/j.apsusc.2012.03.098 -
C. S. Lee, I. D. Kim, and J. H. Lee, "Selective and Sensitive Detection of Trimethylamine Using ZnO-
$In_2O_3$ Composite Nanofibers," Sens. Actuators, B, 181 463-70 (2013). https://doi.org/10.1016/j.snb.2013.02.008 -
C. Feng, X. Li, J. Ma, Y. Sun, C. Wang, P. Sun, J. Zheng, and G. Lu, "Facile Synthesis and Gas Sensing Properties of
$In_2O_3$ -$WO_3$ Heterojunction Nanofibers," Sens. Actuators, B, 209 622-29 (2015). https://doi.org/10.1016/j.snb.2014.12.019 -
C. Feng, C. Wang, P. Cheng, X. Li, B. Wang, Y. Guan, J. Ma, H. Zhang, Y. Sun, P. Sun, J. Zheng, and G. Lu, "Facile Synthesis and Gas Sensing Properties of
$La_2O_3$ -$WO_3$ Nanofibers," Sens. Actuators, B, 221 434-42 (2015). https://doi.org/10.1016/j.snb.2015.06.114 -
W. Qin, L. Xu, J. Song, R. Xing, and H. Song, "Highly Enhanced Gas Sensing Properties of Porous
$SnO_2$ -$CeO_2$ Composite Nanofibers Prepared by Electrospinning," Sens. Actuators, B, 185 231-37 (2013). https://doi.org/10.1016/j.snb.2013.05.001 -
H. Du, J. Wang, M. Su, P. Yao, Y. Zheng, and N. Yu, "Formaldehyde Gas Sensor Based on
$SnO_2$ /$In_2O_3$ Hetero-Nanofibers by a Modified Double Jets Electrospinning Process," Sens. Actuators, B, 166 746-52 (2012). -
C. Feng, W. Li, C. Li, L. Zhu, H. Zhang, Y. Z. Zhang, S. Ruan, W. Chen, and L. Yu, "Highly Efficient Rapid Ethanol Sensing Based on
$In_2$ -$xNixO_3$ Nanofibers," Sens. Actuators, B, 166 83-8 (2012). - Z. C. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff, and A. Greiner, "Compound Core-Shell Polymer Nanofibers by Co-Electrospinning," Adv. Mater., 15 [22] 1929-32 (2003). https://doi.org/10.1002/adma.200305136
- M. F. Elahi, W. Lu, G. Guoping, and F. Khan, "Core-Shell Fibers for Biomedical Applications-A Review," J. Bioeng. Biomed. Sci., 3 [1] 1-14 (2013).
- R. Khajavi and M. Abbasipour, "Electrospinning as a Versatile Method for Fabricating Coreshell, Hollow and Porous Nanofibers," Sci. Iran., 19 [6] 2029-34 (2012). https://doi.org/10.1016/j.scient.2012.10.037
- J. H. Wendorff, S. Agarwal, and A. Greiner, Electrospinning Materials, Processing, and Applications; pp. 155-58, Wiley-VCH Verlag & Co. KGaA, Singapore, 2012.
- V. Merkle, L. Zeng, W. Teng, M. Slepian, and X. Wu, "Gelatin Shells Strengthen Polyvinyl Alcohol Core/Shell Nanofibers," Polymer, 54 6003-7 (2013). https://doi.org/10.1016/j.polymer.2013.08.056
- G. Korotcenkov, "Metal Oxides for Solid-State Gas Sensors: What Determines Our Choice?," J. Mater. Sci. Eng. B, 139 [1] 1-23 (2007). https://doi.org/10.1016/j.mseb.2007.01.044
- G. Korotcenkov, "Gas Response Control through Structural and Chemical Modification of Metal Oxide Films: State of the Art and Approaches," Sens. Actuators, B, 107 [1] 209-32 (2005). https://doi.org/10.1016/j.snb.2004.10.006
- N. Barsan and U. Weimar, "Conduction Model of Metal Oxide Gas Sensors," J. Electroceram., 7 [3] 143-67 (2001). https://doi.org/10.1023/A:1014405811371
- C. O. Park and S. A. Akbar, "Ceramics for Chemical Sensing," J. Mater. Sci., 38 [23] 4611-37 (2003). https://doi.org/10.1023/A:1027402430153
- A. Rothschild and K. Yigal, "The Effect of Grain Size on the Sensitivity of Nanocrystalline Metal-Oxide Gas Sensors," J. Appl. Phys., 95 [11] 6374-80 (2004). https://doi.org/10.1063/1.1728314
- H. Ogawa, M. Nishikawa, and A. Abe, "Hall Measurement Studies and an Electrical Conduction Model of Tin Oxide Ultrafine Particle Films," J. Appl. Phys., 53 [6] 4448-55 (1982). https://doi.org/10.1063/1.331230
- M. Hubner, C. E. Simion, A. Tomescu-Stanoiu, S. Pokhrel, N. Barsan, and U. Weimar, "Influence of Humidity on CO Sensing with p-Type CuO Thick Film Gas Sensors," Sens. Actuators, B, 153 [2] 347-53 (2011). https://doi.org/10.1016/j.snb.2010.10.046
-
W. Wang, Z. Li, W. Zheng, H. Huang, C. Wang, and J. Sun, "
$Cr_2O_3$ -Sensitized ZnO Electrospun Nanofibers Based Ethanol Detectors," Sens. Actuators, B, 143 [2] 754-58 (2010). https://doi.org/10.1016/j.snb.2009.10.016 - F. L. Meng, Z. Guo, and X. J. Huang, "Graphene-Based Hybrids for Chemiresistive Gas Sensors," TrAC, Trends Anal. Chem., 68 37-47 (2015). https://doi.org/10.1016/j.trac.2015.02.008
- F. Schedin, Ga. K. Eim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, "Detection of Individual Gas Molecules Adsorbed on Graphene," Nat. Mater., 6 [9] 652-55 (2007). https://doi.org/10.1038/nmat1967
- W. Yuan and G. Shi, "Graphene-Based Gas Sensors," J. Mater. Chem. A, 1 [35] 10078-91 (2013). https://doi.org/10.1039/c3ta11774j
- F. Yavari and N. Koratkar, "Graphene-Based Chemical Sensors," J. Phys. Chem. Lett., 3 [13] 1746-53 (2012). https://doi.org/10.1021/jz300358t
- S. Basu and P. Bhattacharyya, "Recent Developments on Graphene and Graphene Oxide Based Solid State Gas Sensors," Sens. Actuators, B, 173 1-21 (2012).
-
J. H. Lee, A. Katoch, S. W. Choi, J. H. Kim, H. W. Kim, and S. S. Kim, "Extraordinary Improvement of Gas-Sensing Performances in
$SnO_2$ Nanofibers Due to Creation of Local p-n Heterojunctions by Loading Reduced Graphene Oxide Nanosheets," ACS Appl. Mater. Interfaces, 7 3101-9 (2015). https://doi.org/10.1021/am5071656 - Z. U. Abideen, H. W. Kim, and S. S. Kim, "An Ultra-Sensitive Hydrogen Gas Sensor Using Reduced Graphene Oxide-Loaded ZnO Nanofibers," Chem. Commun., 51 15418-21 (2015). https://doi.org/10.1039/C5CC05370F
-
D. Wang, M. Zhang, Z. Chen, H. Li, A. Chen, X. Wang, and J. Yang, "Enhanced Formaldehyde Sensing Properties of Hollow
$SnO_2$ Nanofibers by Graphene Oxide. Sens. Actuators, B, 250 533-42 (2017). https://doi.org/10.1016/j.snb.2017.04.164 -
W. Zeng, T. Liu, and Z. L. Wang, "Sensitivity Improvement of
$TiO_2$ -Doped$SnO_2$ to Volatile Organic Compounds," Phys. E, 43 [2] 633-8 (2010). https://doi.org/10.1016/j.physe.2010.10.010 - S. Ju, S. Kim, S. Mohammadi, D. B. Janes, Y. G. Ha, and A. Facchetti, "Interface Studies of ZnO Nanowire Transistors Using Low-Frequency Noise and Temperature-Dependent I-V Measurements," Appl. Phys. Lett., 92 [2] 022104 (2008). https://doi.org/10.1063/1.2830005
-
C. A. Pan and T. P. Ma, "Work Function of
$In_2O_3$ Film as Determined From Internal Photoemission," Appl. Phys. Lett., 37 [8] 714-16 (1980). https://doi.org/10.1063/1.92055 - P. Feng, Q. Wan, and T. H. Wang, "Contact-Controlled Sensing Properties of Flowerlike ZnO Nanostructures," Appl. Phys. Lett., 87 [21] 213111 (2005). https://doi.org/10.1063/1.2135391
-
P. Feng, X. Y. Xue, Y. G. Liu, and T. H. Wang, "Highly Sensitive Ethanol Sensors Based on {100}-Bounded
$In_2O_3$ Nanocrystals Due to Face Contact," Appl. Phys. Lett., 89 [24] 243514 (2006). https://doi.org/10.1063/1.2404935 - A. Kolmakov and M. Moskovits, "Chemical Sensing and Catalysis by One-Dimensional Metal-Oxide Nanostructures," Annu. Rev. Mater. Res., 34 151-80 (2004). https://doi.org/10.1146/annurev.matsci.34.040203.112141
-
J. Gao, L. Wang, K. Kan, S. Xu, L. Jing, Ls. Iu, P. Shen, L. Li, and K. Shi, "One-Step Synthesis of Mesoporous
$Al_2O_3$ -$In_2O_3$ Nanofibres with Remarkable Gas-Sensing Performance to NOx at Room Temperature," J. Mater. Chem. A, 2 [4] 949-56 (2014). https://doi.org/10.1039/C3TA13943C -
W. Li, S. Ma, Y. Li, G. Yang, Y. Mao, J. Luo, D. Gengzang, X. Xu, and S. Yan, "Enhanced Ethanol Sensing Performance of Hollow ZnO-
$SnO_2$ Core-Shell Nanofibers. Sens. Actuators, B, 211 392-402 (2015). https://doi.org/10.1016/j.snb.2015.01.090 -
H. Du, J. Wang, Y. Sun, P. Yao, X. Li, and N. Yu, "Investigation of Gas Sensing Properties of
$SnO_2$ /$In_2O_3$ Composite Hetero-Nanofibers Treated by Oxygen Plasma," Sens. Actuators, B, 206 753-63 (2015). https://doi.org/10.1016/j.snb.2014.09.010 -
X. Yang, V. Salles, Y. V. Kaneti, M. Liu, M. Maillard, C. Journet, X. Jiang, and A. Brioude, "Fabrication of Highly Sensitive Gas Sensor Based on Au Functionalized
$WO_3$ Composite Nanofibers by Electrospinning," Sens. Actuators, B, 220 1112-9 (2015). https://doi.org/10.1016/j.snb.2015.05.121 -
Y. Lin, W. Wei, Y. Li, F. Li, J. Zhou, D. Sun, Y. Chen, and S. Ruan, "Preparation of Pd Nanoparticle-Decorated Hollow
$SnO_2$ Nanofibers and Their Enhanced Formaldehyde Sensing Properties," J. Alloys Compd., 651 690-98 (2015). https://doi.org/10.1016/j.jallcom.2015.08.174 -
X. Xu, Y. Chen, G. Zhang, S. Ma, Y. Lu, H. Bian, and Q. Chen, "Highly Sensitive VOCs-Acetone Sensor Based on Ag-Decorated
$SnO_2$ Hollow Nanofibers," J. Alloys Compd., 703 572-79 (2017). https://doi.org/10.1016/j.jallcom.2017.01.348 -
N. Kim, H. Choi, J. Seon, D. Yang, J. Bae, J. Park, and I. D. Kim, "Highly Sensitive and Selective Hydrogen Sulfide and Toluene Sensors Using Pd Functionalized
$WO_3$ Nanofibers for Potential Diagnosis of Halitosis and Lung Cancer," Sens. Actuators, B, 193 574-81 (2014). https://doi.org/10.1016/j.snb.2013.12.011 -
A. Katoch, S. W. Choi, J. H. Kim, J. H. Lee, J. S. Lee, and S. S. Kim, "Importance of the Nanograin Size on the
$H_2S$ -Sensing Properties of ZnO-CuO Composite Nanofibers," Sens. Actuators, B, 214 111-16 (2015). https://doi.org/10.1016/j.snb.2015.03.012 -
H. Wu, K. Kan, L. Wang, G. Zhang, Y. Yang, and H. Li, "Electrospinning of Mesoporous p-Type
$In_2O_3$ /$TiO_2$ Composite Nanofibers for Enhancing NOx Gas Sensing Properties at Room Temperature," CrystEngComm, 16 [38] 9116-24 (2014). https://doi.org/10.1039/C4CE01248H -
J. Cao, Z. Y. Wang, R. Wang, S. Liu, T. Fei, and L. J. Wang, "Synthesis of Core-Shell
${\alpha}-Fe_2O_3@NiO$ Nanofibers with Hollow Structures and Their Enhanced HCHO Sensing Properties," J. Mater. Chem. A, 3 5635-41 (2015). https://doi.org/10.1039/C4TA06892K -
Y. Liu, X. Sun, B. Li, and Y. Lei, "Tunable p-n Transition Behaviour of a p-
$La_{0.67}Sr_{0.33}MnO_3/n$ -$CeO_2$ Nanofibers Heterojunction for the Development of Selective High Temperature Propane Ssensors," J. Mater. Chem. A, 2 11651-59 (2014). https://doi.org/10.1039/C4TA01103A - C. Li, C. H. Feng, F. D. Qu, J. Liu, L. H. Zhu, and Y. Lin, "Electrospun Nanofibers of p-Type NiO/n-Type ZnO Heterojunction with Different NiO Content and Its Influence on Trimethylamine Sensing Properties," Sens. Actuators, B, 207 90-6 (2015). https://doi.org/10.1016/j.snb.2014.10.035
-
L. Liu, Y. Zhang, G. G. Wang, S. C. Li, L. Y. Wang, and Y. Han, "High Toluene Sensing Pproperties of NiO-
$SnO_2$ Composite Nanofiber Sensors Operating at 330 Degrees C," Sens. Actuators, B, 160 448-54 (2011). https://doi.org/10.1016/j.snb.2011.08.007 -
X. Liang, T. H. Kim, J. W. Yoon, C. H. Kwak, and J. H. Lee, "Ultrasensitive and Ultraselective Detection of
$H_2S$ Using Electrospun CuO-Loaded$In_2O_3$ Nanofiber Sensors Assisted by Pulse Hheating," Sens. Actuators, B, 209 934-42 (2015). https://doi.org/10.1016/j.snb.2014.11.130 -
Y. Zheng, J. Wang, and P. Yao, "Formaldehyde Sensing Properties of Electrospun NiO-Doped
$SnO_2$ Nanofibers," Sens. Actuators, B, 156 723-30 (2011). https://doi.org/10.1016/j.snb.2011.02.026 - A. Katoch, S. W. Choi, G. J. Sun, and S. S. Kim, "An Approach to Detecting a Reducing Gas by Radial Modulation of Electron-Depleted Shells in Core-Shell Nanofibers," J. Mater. Chem. A, 1 13588-96 (2013). https://doi.org/10.1039/c3ta13087h
-
A. Yang, X. Tao, R. Wang, S. Lee, and C. Surya, "Room Temperature Gas Sensing Properties of
$SnO_2$ /Multiwall-Carbon-Nanotube Composite Nanofibers," Appl. Phys. Lett., 91 133110-13 (2007). https://doi.org/10.1063/1.2783479 - Y. H. Li, J. Gong, G. H. He, and Y. L. Deng, "Fabrication of Polyaniline/Titanium Dioxide Composite Nnanofibers for Gas Sensing Application," Mater. Chem. Phys., 129 477-82 (2011). https://doi.org/10.1016/j.matchemphys.2011.04.045
-
W. Tang, J. Wang, P. J. Yao, and X. G. Li, "Hollow Hierarchical
$SnO_2$ -ZnO Composite Nanofibers with Hheterostructure Based on Electrospinning Method for Detecting Methanol," Sens. Actuators, B, 192 543-49 (2014). https://doi.org/10.1016/j.snb.2013.11.003 -
T. A. Ho, T. S. Jun, and Y. S. Kim, "Material and
$NH_3$ -Sensing Properties of Polypyrrole-Coated Tungsten Oxide Nanofibers," Sens. Actuators, B, 185 523-29 (2013). https://doi.org/10.1016/j.snb.2013.05.039 -
S. Yan and Q. S. Wu, "Micropored Sn-
$SnO_2$ /Carbon Heterostructure Nanofibers and Their Highly Sensitive and Selective$C_2H_5OH$ Gas Sensing Performance," Sens. Actuators, B, 205 329-37 (2014). https://doi.org/10.1016/j.snb.2014.08.062 -
J. A. Deng, B. Yu, Z. Lou, L. L. Wang, R. Wang, and T. Zhang, "Facile Synthesis and Enhanced Ethanol Sensing Properties of the Brush-Like ZnO-
$TiO_2$ Heterojunctions Nanofibers," Sens. Actuators, B, 184 21-6 (2013). https://doi.org/10.1016/j.snb.2013.04.020 -
Q. Qi, Y. C. Zou, M.-H. Fan, Y. P. Liu, S. Gao, and P. P. Wang, "Trimethylamine Sensors with Enhanced Anti- Humidity Ability Fabricated From
$La_{0.7}Sr_{0.3}FeO_3$ Coated$In_2O_3$ -$SnO_2$ Ccomposite Nanofibers," Sens. Actuators, B, 203 111-17 (2014). https://doi.org/10.1016/j.snb.2014.06.082 -
Q. Qi, P. P. Wang, J. Zhao, L. L. Feng, L. J. Zhou, and R. F. Xuan, "
$SnO_2$ Nanoparticle-Coated$In_2O_3$ Nanofibers with Improved$NH_3$ Sensing Properties," Sens. Actuators, B, 194 440-46 (2014). https://doi.org/10.1016/j.snb.2013.12.115 -
B. B. Wang, X. X. Fu, F. Liu, S. L. Shi, J. P. Cheng, and X. B. Zhang, "Fabrication and Gas Sensing Pproperties of Hollow Core-Shell
$SnO_2$ /${\alpha}-Fe_2O_3$ Heterogeneous Structures," J. Alloys Compd., 587 82-9 (2014). https://doi.org/10.1016/j.jallcom.2013.10.176
Cited by
- Gas Sensing Layer pp.0974-780X, 2018, https://doi.org/10.1080/03772063.2018.1502625
- Enhancing Gas Response Characteristics of Mixed Metal Oxide Gas Sensors vol.55, pp.1, 2018, https://doi.org/10.4191/kcers.2018.55.1.10
- Enhanced Hydrogen Detection in ppb-Level by Electrospun SnO2-Loaded ZnO Nanofibers vol.19, pp.3, 2019, https://doi.org/10.3390/s19030726
- Discrimination of Gasoline and Diesel Fuels Using Oxide Semiconductor Gas Sensors vol.27, pp.4, 2018, https://doi.org/10.5369/jsst.2018.27.4.221
- Effect of temperature on gas sensing properties of lithium ( L i ) substituted ( N i F e 2 O 4 ) nickel ferrite thin film vol.1177, pp.None, 2017, https://doi.org/10.1016/j.molstruc.2018.09.085
- 반도체 탄소 나노재료 기반 상온 동작용 가스센서 vol.22, pp.1, 2017, https://doi.org/10.31613/ceramist.2019.22.1.08
- Comparative Study on the Preparation and Gas Sensing Properties of Reduced Graphene Oxide/SnO2 Binary Nanocomposite for Detection of Acetone in Exhaled Breath vol.91, pp.8, 2017, https://doi.org/10.1021/acs.analchem.8b05670
- Fabrication of a kinetically sprayed CuO ultra-thin film to evaluate CO gas sensing parameters vol.43, pp.20, 2017, https://doi.org/10.1039/c9nj00289h
- Electrospinning production of nanofibrous membranes vol.17, pp.2, 2017, https://doi.org/10.1007/s10311-018-00838-w
- Electrospun Ceramic Nanofibers and Hybrid-Nanofiber Composites for Gas Sensing vol.2, pp.7, 2019, https://doi.org/10.1021/acsanm.9b01176
- Thermal properties of electrospun polyvinylpyrrolidone/titanium tetraisopropoxide composite nanofibers vol.137, pp.4, 2017, https://doi.org/10.1007/s10973-019-08030-0
- ppb-Level Selective Hydrogen Gas Detection of Pd-Functionalized In2O3-Loaded ZnO Nanofiber Gas Sensors vol.19, pp.19, 2017, https://doi.org/10.3390/s19194276
- Investigation of Ag-Doping in Kinetically Sprayed SnO2 Composite Film and Its Application to Gas Sensor vol.20, pp.11, 2017, https://doi.org/10.1007/s12541-019-00208-8
- Nanostructured Semiconducting Metal Oxide Gas Sensors for Acetaldehyde Detection vol.7, pp.4, 2017, https://doi.org/10.3390/chemosensors7040056
- Resistive gas sensors based on metal-oxide nanowires vol.126, pp.24, 2017, https://doi.org/10.1063/1.5118805
- Enhancing room temperature ethanol sensing using electrospun Ag-doped SnO2-ZnO nanofibers vol.31, pp.20, 2017, https://doi.org/10.1007/s10854-020-04276-9
- Electrospinning metal Phosphide/Carbon nanofibers from Phytic Acid for hydrogen evolution reaction catalysts vol.31, pp.41, 2017, https://doi.org/10.1088/1361-6528/ab9e94
- A review on metal-oxide based p-n and n-n heterostructured nano-materials for gas sensing applications vol.2, pp.None, 2021, https://doi.org/10.1016/j.sintl.2021.100085
- The Role of Electrospun Nanomaterials in the Future of Energy and Environment vol.14, pp.3, 2017, https://doi.org/10.3390/ma14030558
- Reduced Graphene Oxide (rGO)-Loaded Metal-Oxide Nanofiber Gas Sensors: An Overview vol.21, pp.4, 2017, https://doi.org/10.3390/s21041352
- Fabrication of Carbon Nanofibers Decorated with Various Kinds of Metal Oxides for Battery Applications vol.14, pp.5, 2021, https://doi.org/10.3390/en14051353
- Metal Oxide-Based Photocatalytic Paper: A Green Alternative for Environmental Remediation vol.11, pp.4, 2017, https://doi.org/10.3390/catal11040504
- Comparative study on the gas-sensing performance of ZnO/SnO2 external and ZnO–SnO2 internal heterojunctions for ppb H2S and NO2 gases detection vol.334, pp.None, 2017, https://doi.org/10.1016/j.snb.2021.129606
- Electrospun Metal Oxide Nanofibers and Their Conductometric Gas Sensor Application. Part 1: Nanofibers and Features of Their Forming vol.11, pp.6, 2017, https://doi.org/10.3390/nano11061544
- Electrospun Metal Oxide Nanofibers and Their Conductometric Gas Sensor Application. Part 2: Gas Sensors and Their Advantages and Limitations vol.11, pp.6, 2017, https://doi.org/10.3390/nano11061555
- Electrospun YSZ/silica nanofibers with controlled fiber diameters for air/water filtration media vol.58, pp.4, 2017, https://doi.org/10.1007/s43207-021-00124-6
- 1D Metal Oxide Semiconductor Materials for Chemiresistive Gas Sensors: A Review vol.7, pp.9, 2017, https://doi.org/10.1002/aelm.202100271
- Highly sensitive and selective sub ppb level acetone sensing platform based on Co3O4-ZnO heterojunction composites vol.36, pp.9, 2017, https://doi.org/10.1088/1361-6641/ac17a7
- Insights into nano-heterostructured materials for gas sensing: a review vol.4, pp.3, 2021, https://doi.org/10.1088/2399-7532/ac1732
- Effect of Ag Addition on the Gas-Sensing Properties of Nanostructured Resistive-Based Gas Sensors: An Overview vol.21, pp.19, 2021, https://doi.org/10.3390/s21196454
- Electrospun Nanofibers for Quartz Crystal Microbalance Gas Sensors: A Review vol.4, pp.10, 2017, https://doi.org/10.1021/acsanm.1c01895
- Metal-Organic-Frameworks: Low Temperature Gas Sensing and Air Quality Monitoring vol.9, pp.11, 2017, https://doi.org/10.3390/chemosensors9110316
- Nanotechnology in Fire Protection-Application and Requirements vol.14, pp.24, 2021, https://doi.org/10.3390/ma14247849
- State-of-the-Art Research on Chemiresistive Gas Sensors in Korea: Emphasis on the Achievements of the Research Labs of Professors Hyoun Woo Kim and Sang Sub Kim vol.22, pp.1, 2017, https://doi.org/10.3390/s22010061
- A novel electrochemical sensor for the detection of fipronil and its toxic metabolite fipronil sulfone using TiO2-polytriazine imide submicrostructured composite as an efficient electrocatalyst vol.238, pp.p2, 2017, https://doi.org/10.1016/j.talanta.2021.123025
- One‐dimensional electrospun ceramic nanomaterials and their sensing applications vol.105, pp.2, 2017, https://doi.org/10.1111/jace.18140