DOI QR코드

DOI QR Code

Electrospun Metal Oxide Composite Nanofibers Gas Sensors: A Review

  • Abideen, Zain Ul (Department of Materials Science and Engineering, Inha University) ;
  • Kim, Jae-Hun (Department of Materials Science and Engineering, Inha University) ;
  • Lee, Jae-Hyoung (Department of Materials Science and Engineering, Inha University) ;
  • Kim, Jin-Young (Department of Materials Science and Engineering, Inha University) ;
  • Mirzaei, Ali (The Research Institute of Industrial Science, Hanyang University) ;
  • Kim, Hyoun Woo (The Research Institute of Industrial Science, Hanyang University) ;
  • Kim, Sang Sub (Department of Materials Science and Engineering, Inha University)
  • Received : 2017.08.18
  • Accepted : 2017.09.11
  • Published : 2017.09.30

Abstract

Nanostructured materials have attracted considerable research interest over the recent decades because of their potential applications in nanoengineering and nanotechnology. On the other hand, the developments in nanotechnology are strongly dependent on the availability of new materials with novel and engineered morphologies. Among the novel nanomaterials reported thus far, composite nanofibers (NFs) have attracted considerable attention in recent years. In particular, metal oxide NFs have great potential for the development of gas sensors. Highly sensitive and selective gas sensors can be developed by using composite NFs owing to their large surface area and abundance of grain boundaries. In composite NFs, gas sensing properties can be enhanced greatly by tailoring the conduction channel and surface properties by compositional modifications using the synergistic effects of different materials and forming heterointerfaces. This review focuses on the gas sensing properties of composite NFs synthesized by an electrospinning (ES) method. The synthesis of the composite NFs by the ES method and the sensing mechanisms involved in different types of composite NFs are presented along with the future perspectives of composite NFs.

Keywords

References

  1. A. Mirzaei, S. G. Leonardi, and G. Neri, "Detection of Hazardous Volatile Organic Compounds (VOCs) by Metal Oxide Nanostructures-Based Gas Sensors: A Review," Ceram. Int., 42 [14] 15119-41 (2016). https://doi.org/10.1016/j.ceramint.2016.06.145
  2. G. Korotcenkov and B. K. Cho, "Metal Oxide Composites in Conductometric Gas Sensors: Achievements and Challenges," Sens. Actuators, B, 244 182-210 (2017). https://doi.org/10.1016/j.snb.2016.12.117
  3. I. Fratoddi, I. Venditti, C. Cametti, and M. V. Russo, "Chemiresistive Polyaniline-Based Gas Sensors: A Mini Review," Sens. Actuators, B, 220 534-48 (2015). https://doi.org/10.1016/j.snb.2015.05.107
  4. A. Mirzaei and G. Neri, "Microwave-Assisted Synthesis of Metal Oxide Nanostructures for Gas Sensing Application: A Review," Sens. Actuators, B, 237 749-75 (2016). https://doi.org/10.1016/j.snb.2016.06.114
  5. S. S. Varghese, S. Lonkar, K. K. Singh, S. Swaminathan, and A. Abdala, "Recent Advances in Graphene Based Gas Sensors," Sens. Actuators, B, 218 160-83 (2015). https://doi.org/10.1016/j.snb.2015.04.062
  6. M. Kampa and E. Castanas, "Human Health Effects of Air Pollution," Environ. Pollut., 151 [2] 362-7 (2008). https://doi.org/10.1016/j.envpol.2007.06.012
  7. I. Simon, N. Barsan, M. Bauer, and U. Weimar, "Micromachined Metal Oxide Gas Sensors: Opportunities to Improve Sensor Performance," Sens. Actuators, B, 73 [1] 1-26 (2001). https://doi.org/10.1016/S0925-4005(00)00639-0
  8. A. D. McNaught and A. Wilkinson, Compendium of Chemical Terminology; Vol. 1669, pp. 165-66, Blackwell Science, Oxford, 1997.
  9. G. Eranna, Metal Oxide Nanostructures as Gas Sensing Devices; Vol. 316, pp. 1-2, CRC Press, Boca Raton, 2011.
  10. V. K. Khanna, Nanosensors: Physical, Chemical, and Biological; Vol. 53, pp. 51-522, CRC Press, Oxford, 2011.
  11. W. P. Jakubik, "Surface Acoustic Wave-Based Gas Sensors," Thin Solid Films, 520 [3] 986-93 (2011). https://doi.org/10.1016/j.tsf.2011.04.174
  12. F. Tavoli, N. Alizadeh, "Optical Ammonia Gas Sensor Based on Nanostructure Dye-Doped Polypyrrole," Sens. Actuators, B, 176 761-67 (2013). https://doi.org/10.1016/j.snb.2012.09.013
  13. C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, and K. C. Singh, "Synthesis of Pd or Pt/Titanate Nanotube and Its Application to Catalytic Type Hydrogen Gas Sensor," Sens. Actuators, B, 128 320-25 (2007). https://doi.org/10.1016/j.snb.2007.06.025
  14. F. Tebizi-Tighilt, F. Zane, N. Belhaneche-Bensemra, S. Belhousse, S. Sam, and N. Gabouze, "Electrochemical Gas Sensors Based on Polypyrrole-Porous Silicon," Appl. Surf. Sci., 269 180-83 (2013). https://doi.org/10.1016/j.apsusc.2012.10.080
  15. G. Barochi, J. Rossignol, and M. Bouvet, "Development of Microwave Gas Sensors," Sens. Actuators, B, 157 [2] 374-79 (2011). https://doi.org/10.1016/j.snb.2011.04.059
  16. M. J. Madou and S. R. Morrison, Chemical Sensing with Solid State Devices; pp. 163-66, Academic Press, New York, 1989.
  17. A. Mirzaei, K. Janghorban, B. Hashemi, and G. Neri, "Metal-Core@ Metal Oxide-Shell Nanomaterials for Gas-Sensing Applications: A Review," J. Nanopart. Res., 9 [17] 1-36 (2015).
  18. C. G. B. Garrett and W. H. Brattain, "Physical Theory of Semiconductor Surfaces," Phys. Rev., 99 376-87 (1955). https://doi.org/10.1103/PhysRev.99.376
  19. W. H. Brattain and C. G. B. Garrett, "Surface Properties of Semiconductors," Physica, 20 885-92 (1954). https://doi.org/10.1016/S0031-8914(54)80200-X
  20. W. H. Brattain and J. Bardeen, "Surface Properties of Germanium," Bell Syst. Tech. J., 32 1-41 (1953). https://doi.org/10.1002/j.1538-7305.1953.tb01420.x
  21. A. Bielanski, J. Deren, and J. Haber, "Electric Conductivity and Catalytic Activity of Semiconducting Oxide Catalysts," Nature, 179 668-9 (1957). https://doi.org/10.1038/179668a0
  22. T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, "A New Detector for Gaseous Components Using Semiconductive Thin Films," Anal. Chem., 34 1502-3 (1962). https://doi.org/10.1021/ac60191a001
  23. T. Seiyama and S. Kagawa, "Study on a Detector for Gaseous Components Using Semiconductive Thin Films" Anal. Chem., 38 1069-73 (1966). https://doi.org/10.1021/ac60240a031
  24. N. Taguchi, "Method for Making a Gas-Sensing Element"; US Patent 3,625,756 (December 7, 1971).
  25. N. Taguchi, "Semiconductor Gas Detecting Device"; US Patent 3,732,519 (May 8, 1973).
  26. H. J. Kim and J. H. Lee, "Highly Sensitive and Selective Gas Sensors Using p-Type Oxide Semiconductors: Overview," Sens. Actuators, B, 192 607-27 (2014). https://doi.org/10.1016/j.snb.2013.11.005
  27. S. R. Morrison, "Selectivity in Semiconductor Gas Sensors," Sens. Actuators, B, 12 425-40 (1987). https://doi.org/10.1016/0250-6874(87)80061-6
  28. N. Yamazoe, Y. Kurokawa, and T. Seiyama, "Effects of Additives on Semiconductor Gas Sensors," Sens. Actuators, B, 4 283-9 (1983). https://doi.org/10.1016/0250-6874(83)85034-3
  29. N. Yamazoe, "Toward Innovations of Gas Sensor Technology," Sens. Actuators, B, 108 2-14 (2005). https://doi.org/10.1016/j.snb.2004.12.075
  30. N. Yamazoe, G. Sakai, and K. Shimanoe, "Oxide Semiconductor Gas Sensors," Catal. Surv. Asia, 7 [1] 63-75 (2003). https://doi.org/10.1023/A:1023436725457
  31. N. Yamazoe, "New Approaches for Improving Semiconductor Gas Sensors," Sens. Actuators, B, 5 7-19 (1991). https://doi.org/10.1016/0925-4005(91)80213-4
  32. A. Khayatian, S. Safa, R. Azimirad, M. A. Kashi, and S. F. Akhtarianfar, "The Effect of Fe-Dopant Concentration on Ethanol Gas Sensing Properties of Fe Doped ZnO/ZnO Shell/Core nanorods," Phys. E, 84 71-8 (2016). https://doi.org/10.1016/j.physe.2016.05.030
  33. X. Kou, C. Wang, M. Ding, C. Feng, X. Li, J. Ma, H. Zhang, and Y. Sun, "Synthesis of Co-Doped $SnO_2$ Nanofibers and Their Enhanced Gas-Sensing Properties," Sens. Actuators, B, 236 425-32 (2016). https://doi.org/10.1016/j.snb.2016.06.006
  34. K. G. Girija, K. Somasundaram, A. Topkar, and R. K. Vatsa, "Highly Selective $H_2S$ Gas Sensor Based on Cu-Doped ZnO Nanocrystalline Films Deposited by RF Magnetron Sputtering of Powder Target," J. Alloys Compd., 684 15-20 (2016). https://doi.org/10.1016/j.jallcom.2016.05.125
  35. M. Epifani, J. Arbiol, E. Pellicer, E. Comini, P. Siciliano, G. Faglia, "Synthesis and Gas-Sensing Properties of Pd-Doped $SnO_2$ Nanocrystals. A Case Study of a General Methodology for Doping Metal Oxide Nanocrystals," Cryst. Growth Des., 8 [5] 1774-8 (2008). https://doi.org/10.1021/cg700970d
  36. M. Epifani, T. Andreu, R. Zamani, J. Arbiol, E. Comini, and P. Siciliano, "Pt Doping Triggers Growth of $TiO_2$ Nanorods: Nanocomposite Synthesis and Gas-Sensing Properties," CrystEngComm, 14 3882-87 (2012). https://doi.org/10.1039/c2ce06690d
  37. V. Dobrokhotov, D. N. Mcilroy, M. G. Norton, A. Abuzir, W. J. Yeh, and I. Stevenson, "Principles and Mechanisms of Gas Sensing by GaN Nanowires Functionalized with Gold Nnanoparticles," J. Appl. Phys., 99 [10] 104302-9 (2006). https://doi.org/10.1063/1.2195420
  38. A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, "Enhanced Gas Sensing by Individual $SnO_2$ Nanowires and Nanobelts Functionalized with Pd Catalyst Particles," Nano Lett., 5 [4] 667-73 (2005). https://doi.org/10.1021/nl050082v
  39. U. Heiz and E. L. Bullock, "Fundamental Aspects of Catalysis on Supported Metal Clusters," J. Mater. Chem., 14 [4] 564-77 (2004). https://doi.org/10.1039/b313560h
  40. W. C. Conner and J. L. Falconer, "Spillover in Heterogeneous Catalysis," Chem. Rev., 95 [3] 759-88 (1995). https://doi.org/10.1021/cr00035a014
  41. D. R. Miller, S. A. Akbar, and P. A. Morris, "Nanoscale Metal Oxide-Based Heterojunctions for Gas Sensing: A Review," Sens. Actuators, B, 204 250-72 (2014). https://doi.org/10.1016/j.snb.2014.07.074
  42. E. Comini, M. Ferroni, V. Guidi, G. Faglia, G. Martinelli, and G. Sberveglieri, "Nanostructured Mixed Oxides Compounds for Gas Sensing Applications," Sens. Actuators, B, 84 26-32 (2002). https://doi.org/10.1016/S0925-4005(02)00006-0
  43. D. Barreca, E. Comini, A. P. Ferrucci, A. Gasparotto, C. Maccato, and C. Maragno, "First Example of ZnO-$TiO_2$ Nanocomposites by Chemical Vapor Deposition: Structure, Morphology, Composition, and Gas Sensing Performances," Chem. Mater., 19 [23] 5642-9 (2007). https://doi.org/10.1021/cm701990f
  44. C. W. Na, H. S. Woo, I. D. Kim, and J. H. Lee, "Selective Detection of $NO_2$ and $C_2H_5OH$ Using a $Co_3O_4$-Decorated ZnO Nanowire Network Sensor," Chem. Commun., 47 [18] 5148-50 (2011). https://doi.org/10.1039/c0cc05256f
  45. J. Zhang, X. Liu, L. Wang, T. Yang, X. Guo, and S. Wu, "Synthesis and Gas Sensing Pproperties of Alpha-$Fe_2O^3@ZnO$ Core-Shell Nanospindles," Nanotechnology, 22 [18] 185501-8 (2011). https://doi.org/10.1088/0957-4484/22/18/185501
  46. A. P. Lee and B. J. Reedy, "Temperature Modulation in Semiconductor Gas Sensing," Sens. Actuators, B, 60 35-42 (1999). https://doi.org/10.1016/S0925-4005(99)00241-5
  47. A. Fort, M. Gregorkiewitz, N. Machetti, S. Rocchi, B. Serrano, and L. Tondi, "Selectivity Enhancement of $SnO_2$ Sensors by Means of Operating Temperature Modulation," Thin Solid Films, 418 [1] 2-8 (2002). https://doi.org/10.1016/S0040-6090(02)00575-8
  48. M. E. Franke, T. J. Koplin, and U. Simon, "Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter?," Small, 2 [1] 36-50 (2006). https://doi.org/10.1002/smll.200500261
  49. Y. Shimizu and M. Egashira, "Basic Aspects and Challenges of Semiconductor Gas Sensors," MRS Bull., 24 [6] 18-24 (1999).
  50. J. H. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, "Extremely Sensitive and Selective Sub-ppm CO Detection by the Synergistic Effect of Au Nanoparticles and Core-Shell Nanowires," Sens. Actuators, B, 249 177-88 (2017). https://doi.org/10.1016/j.snb.2017.04.090
  51. A. A. Mane and A. V. Moholkar, "Orthorhombic $MoO_3$ Nanobelts Based $NO_2$ Gas Sensor," Appl. Surf. Sci., 405 427-40 (2017). https://doi.org/10.1016/j.apsusc.2017.02.055
  52. L. Xue, W. Wang, Y. Guo, G. Liu, and P. Wan, "Flexible Polyaniline/Carbon Nanotube Nanocomposite Film-Based Electronic Gas Sensors," Sens. Actuators, B, 244 47-53 (2017). https://doi.org/10.1016/j.snb.2016.12.064
  53. L. Liu, P. Song, Z. Yang, and Q. Wang, "Highly Sensitive and Selective Trimethylamine Sensors Based on $WO_3$ Nanorods Decorated with Au Nanoparticles," Phys. E, 90 109-15 (2017). https://doi.org/10.1016/j.physe.2017.03.025
  54. J. H. Kim, J. H. Lee, A. Mirzaei, H. W. Kim, and S. S. Kim, "Optimization and Gas Sensing Mechanism of n-$SnO_2$-p-$Co_3O_4$ Composite Nanofibers," Sens. Actuators, B, 248 500-11 (2017). https://doi.org/10.1016/j.snb.2017.04.029
  55. Z. L. Wang, "Characterizing the Structure and Properties of Individual Wire-Like Nanoentities," Adv. Mater., 12 [17] 1295-8 (2000). https://doi.org/10.1002/1521-4095(200009)12:17<1295::AID-ADMA1295>3.0.CO;2-B
  56. J. D. Prades, R. Jimenez-Diaz, F. Hernandez-Ramirez, S. Barth, A. Cirera, and A. Romano-Rodriguez, "Ultralow Power Consumption Gas Sensors Based on Self-Heated Individual Nanowires," Appl. Phys. Lett., 93 [12] 123110-13 (2008). https://doi.org/10.1063/1.2988265
  57. E. Comini, C. Baratto, I. Concina, G. Faglia, M. Falasconi, and M. Ferroni, "Metal Oxide Nanoscience and Nanotechnology for Chemical Sensors," Sens. Actuators, B, 179 3-20 (2013). https://doi.org/10.1016/j.snb.2012.10.027
  58. E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, and G. Sberveglieri, "Quasi-One Dimensional Metal Ooxide Semiconductors: Preparation, Characterization and Application as Chemical Sensors," Prog. Mater. Sci., 54 [1] 1-67 (2009). https://doi.org/10.1016/j.pmatsci.2008.06.003
  59. Z. U. Abideen, A. Katoch, J. H. Kim, Y. J. Kwon, H. W. Kim, and S. S. Kim, "Excellent Gas Detection of ZnO Nanofibers by Loading with Reduced Graphene Oxide Nanosheets," Sens. Actuators, B, 221 1499-507 (2015). https://doi.org/10.1016/j.snb.2015.07.120
  60. E. S. Medeiros, G. M. Glenn, A. P. Klamczynski, W. J. Orts, and L. H. Cmattoso, "Solution Blow Spinning: A New Method to Produce Micro- and Nanofibers From Polymer Solutions," J. Appl. Poly. Sci., 113 [4] 2322-30 (2009). https://doi.org/10.1002/app.30275
  61. N. Li and C. R. Martin, "A High-Rate, High-Capacity, Nanostructured Sn-Based Anode Prepared Using Sol-Gel Template Synthesis," J. Electrochem. Soc., 148 A164-70 (2001). https://doi.org/10.1149/1.1342167
  62. X. Zhang and Y. Lu, "Centrifugal Spinning: An Alternative Approach to Fabricate Nanofibers at High Speed and Low Cost," Polym. Rev., 54 [4] 677-701 (2014). https://doi.org/10.1080/15583724.2014.935858
  63. K. L. Niece, J. D. Hartgerink, J. J. J. M. Donners, and S. I. Stupp, "Self-Assembly Combining Two Bioactive Peptide-Amphiphile Molecules into Nanofibers by Electrostatic Attraction," J. Am. Chem. Soc., 125 [24] 7146-7 (2003). https://doi.org/10.1021/ja028215r
  64. S. Wang, F. Hu, J. Li, S. Zhang, M. Shen, M. Huang, and X. Shi, "Design of Electrospun Nanofibrous Mats for Osteogenic Differentiation of Mesenchymal Stem Cells," Nanomedicine, in press.
  65. D. Li and Y. Xia, "Electrospinning of Nanofibers: Reinventing the Wheel?," Adv. Mater., 16 [14] 1151-70 (2004). https://doi.org/10.1002/adma.200400719
  66. R. Ramakrishnan, S. Subramanian, J. Rajan, and S. Ramakrishna, "Nanostructured Ceramics by Electrospinning," J. Appl. Phys., 102 [11] 111101 (2007). https://doi.org/10.1063/1.2815499
  67. D. H. Reneker and A. L. Yarin, "Electrospinning Jets and Polymer Nanofibers," Polymer, 49 [10] 2387-425 (2008). https://doi.org/10.1016/j.polymer.2008.02.002
  68. J. Doshi and D. H. Reneker, "Electrospinning Process and Applications of Electrospun Fibers," J. Electrost., 35 [2] 151-60 (1995). https://doi.org/10.1016/0304-3886(95)00041-8
  69. J. P. F. Lagerwall, J. T. Mccann, E. Formo, G. Scalia, and Y. Xia, "Coaxial Electrospinning of Microfibres with Liquid Crystal in the Core," Chem. Commun., [42] 5420-2 (2008).
  70. P. D. Dalton, D. Grafahrend, K. Klinkhammer, D. Klee, and M. Moller, "Electrospinning of Polymer Melts: Phenomenological Observations," Polymer, 48 [23] 6823-33 (2007). https://doi.org/10.1016/j.polymer.2007.09.037
  71. A. V. Bazilevsky, A. L. Yarin, and C. M. Megaridis, "Co-Electrospinning of Core-Shell Fibers Using a Single-Nozzle Technique," Langmuir, 23 [5] 2311-4 (2007). https://doi.org/10.1021/la063194q
  72. A. L. Yarin, E. Zussman, J. H. Wendorff, and A. Greiner, "Material Encapsulation and Transport in Core-Shell Micro/Nanofibers, Polymer and Carbon Nanotubes and Micro/Nanochannels," J. Mater. Chem., 17 [25] 2585-99 (2007). https://doi.org/10.1039/B618508H
  73. C. J. Luo, S. D. Stoyanov, E. Stride, E. Pelan, and M. Edirisinghe, "Electrospinning Versus Fibre Production Methods: From Specifics to Technological Convergence," Chem. Soc. Rev., 41 [13] 4708-35 (2012). https://doi.org/10.1039/c2cs35083a
  74. S. Chigome and N. Torto, "A Review of Opportunities for Electrospun Nanofibers in Analytical Chemistry," Anal. Chim. Acta, 706 [1] 25-36 (2011). https://doi.org/10.1016/j.aca.2011.08.021
  75. S. Thenmozhi, N. Dharmaraj, K. Kadirvelu, and H. Y. Kim, "Electrospun Nanofibers: New Generation Materials for Advanced Applications," Mater. Sci. Eng., B, 217 36-48 (2017). https://doi.org/10.1016/j.mseb.2017.01.001
  76. A. Greiner and J. H. Wendorff, "Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers," Angew. Chem., Int. Ed., 46 [30] 5670-703 (2007). https://doi.org/10.1002/anie.200604646
  77. D. Li, J. T. Mccann, Y. Xia, and M. Marquez, "Electrospinning: A Simple and Versatile Technique for Producing Ceramic Nanofibers and Nanotubes," J. Am. Ceram. Soc., 89 [6] 1861-9 (2006). https://doi.org/10.1111/j.1551-2916.2006.00989.x
  78. B. Sun, Y. Z. Long, Z. J. Chen, S. L. Liu, H. D. Zhang, J. C. Zhang, and W. P. Han, "Recent Advances in Flexible and Stretchable Electronic Devices via Electrospinning," J. Mater. Chem. C, 2 [7] 1209-19 (2014). https://doi.org/10.1039/C3TC31680G
  79. W. E. Teo and S. Ramakrishna, "A Review on Electrospinning Design and Nanofibre Assemblies," Nanotechnology, 17 [14] R89 (2006). https://doi.org/10.1088/0957-4484/17/14/R01
  80. R. Kessick, J. Fenn, and G. Tepper, "The Use of AC Potentials in Electrospraying and Electrospinning Processes," Polymer, 45 [9] 2981-4 (2004). https://doi.org/10.1016/j.polymer.2004.02.056
  81. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, "A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites," Compos. Sci. Technol., 63 [15] 2223-53 (2003). https://doi.org/10.1016/S0266-3538(03)00178-7
  82. A. L. Yarin, S. Koombhongse, and D. H. Reneker, "Taylor Cone and Jetting From Liquid Droplets in Electrospinning of Nanofibers," J. Appl. Phys., 90 [9] 4836-46 (2001). https://doi.org/10.1063/1.1408260
  83. M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, "Electrospinning and Electrically Forced Jets. I. Stability Theory," Phys. Fluids, 13 [8] 2201-20 (2001). https://doi.org/10.1063/1.1383791
  84. X. Lu, C. Wang, and Y. Wei, "One-Dimensional Composite Nanomaterials: Synthesis by Electrospinning and Their Applications," Small, 5 [21] 2349-70 (2009). https://doi.org/10.1002/smll.200900445
  85. A. Katoch, S. W. Choi, and S. S. Kim, "Nanograins in Electrospun Oxide Nanofibers," Met. Mater. Int., 21 [2] 213-21 (2015). https://doi.org/10.1007/s12540-015-4319-8
  86. A. Katoch, G. J. Sun, S. W. Choi, J. H. Byun, and S. S. Kim, "Competitive Influence of Grain Size and Crystallinity on Gas Sensing Performances of ZnO Nanofibers," Sens. Actuators, B, 185 411-6 (2013). https://doi.org/10.1016/j.snb.2013.05.030
  87. A. Katoch, J. H. Kim, and S. S. Kim, "Significance of the Nanograin Size on the $H_2S$-Sensing Ability of CuO-$SnO_2$ Composite Nanofibers," J. Sens., 2015 1-7 (2015).
  88. A. Katoch, S. W. Choi, G. J. Sun, H. W. Kim, and S. S. Kim, "Mechanism and Prominent Enhancement of Sensing Ability to Reducing Gases in p/n Core-Shell Nanofiber," Nanotechnology, 25 175501-8 (2014). https://doi.org/10.1088/0957-4484/25/17/175501
  89. J. Y. Park, S. W. Choi, J. W. Lee, C. Lee, and S. S. Kim, "Synthesis and Gas Sensing Properties of $TiO_2$-ZnO Core-Shell Nanofibers," J. Am. Ceram. Soc., 92 [11] 2551-54 (2009). https://doi.org/10.1111/j.1551-2916.2009.03270.x
  90. A. Katoch, J. H. Kim, and S. S. Kim, "$TiO_2$/ZnO Inner/Outer Double-Layer Hollow Fibers for Improved Detection of Reducing Gases," ACS Appl. Mater. Interfaces, 6 [23] 21494-9 (2014). https://doi.org/10.1021/am506499e
  91. Z. L. Wang, Z. Li, J. Sun, H. Zhang, W. Wang, W. Zheng, and C. Wang, "Improved Hydrogen Monitoring Properties Based on p-NiO/n-$SnO_2$ Heterojunction Composite Nanofibers," J. Phys. Chem. C, 114 [13] 6100-5 (2010). https://doi.org/10.1021/jp9100202
  92. X. J. Zhang and G. J. Qiao, "High Performance Ethanol Sensing Films Fabricated From ZnO and $In_2O_3$ Nanofibers with a Double-Layer Structure," Appl. Surf. Sci., 258 [17] 6643-47 (2012). https://doi.org/10.1016/j.apsusc.2012.03.098
  93. C. S. Lee, I. D. Kim, and J. H. Lee, "Selective and Sensitive Detection of Trimethylamine Using ZnO-$In_2O_3$ Composite Nanofibers," Sens. Actuators, B, 181 463-70 (2013). https://doi.org/10.1016/j.snb.2013.02.008
  94. C. Feng, X. Li, J. Ma, Y. Sun, C. Wang, P. Sun, J. Zheng, and G. Lu, "Facile Synthesis and Gas Sensing Properties of $In_2O_3$-$WO_3$ Heterojunction Nanofibers," Sens. Actuators, B, 209 622-29 (2015). https://doi.org/10.1016/j.snb.2014.12.019
  95. C. Feng, C. Wang, P. Cheng, X. Li, B. Wang, Y. Guan, J. Ma, H. Zhang, Y. Sun, P. Sun, J. Zheng, and G. Lu, "Facile Synthesis and Gas Sensing Properties of $La_2O_3$-$WO_3$ Nanofibers," Sens. Actuators, B, 221 434-42 (2015). https://doi.org/10.1016/j.snb.2015.06.114
  96. W. Qin, L. Xu, J. Song, R. Xing, and H. Song, "Highly Enhanced Gas Sensing Properties of Porous $SnO_2$-$CeO_2$ Composite Nanofibers Prepared by Electrospinning," Sens. Actuators, B, 185 231-37 (2013). https://doi.org/10.1016/j.snb.2013.05.001
  97. H. Du, J. Wang, M. Su, P. Yao, Y. Zheng, and N. Yu, "Formaldehyde Gas Sensor Based on $SnO_2$/$In_2O_3$ Hetero-Nanofibers by a Modified Double Jets Electrospinning Process," Sens. Actuators, B, 166 746-52 (2012).
  98. C. Feng, W. Li, C. Li, L. Zhu, H. Zhang, Y. Z. Zhang, S. Ruan, W. Chen, and L. Yu, "Highly Efficient Rapid Ethanol Sensing Based on $In_2$-$xNixO_3$ Nanofibers," Sens. Actuators, B, 166 83-8 (2012).
  99. Z. C. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff, and A. Greiner, "Compound Core-Shell Polymer Nanofibers by Co-Electrospinning," Adv. Mater., 15 [22] 1929-32 (2003). https://doi.org/10.1002/adma.200305136
  100. M. F. Elahi, W. Lu, G. Guoping, and F. Khan, "Core-Shell Fibers for Biomedical Applications-A Review," J. Bioeng. Biomed. Sci., 3 [1] 1-14 (2013).
  101. R. Khajavi and M. Abbasipour, "Electrospinning as a Versatile Method for Fabricating Coreshell, Hollow and Porous Nanofibers," Sci. Iran., 19 [6] 2029-34 (2012). https://doi.org/10.1016/j.scient.2012.10.037
  102. J. H. Wendorff, S. Agarwal, and A. Greiner, Electrospinning Materials, Processing, and Applications; pp. 155-58, Wiley-VCH Verlag & Co. KGaA, Singapore, 2012.
  103. V. Merkle, L. Zeng, W. Teng, M. Slepian, and X. Wu, "Gelatin Shells Strengthen Polyvinyl Alcohol Core/Shell Nanofibers," Polymer, 54 6003-7 (2013). https://doi.org/10.1016/j.polymer.2013.08.056
  104. G. Korotcenkov, "Metal Oxides for Solid-State Gas Sensors: What Determines Our Choice?," J. Mater. Sci. Eng. B, 139 [1] 1-23 (2007). https://doi.org/10.1016/j.mseb.2007.01.044
  105. G. Korotcenkov, "Gas Response Control through Structural and Chemical Modification of Metal Oxide Films: State of the Art and Approaches," Sens. Actuators, B, 107 [1] 209-32 (2005). https://doi.org/10.1016/j.snb.2004.10.006
  106. N. Barsan and U. Weimar, "Conduction Model of Metal Oxide Gas Sensors," J. Electroceram., 7 [3] 143-67 (2001). https://doi.org/10.1023/A:1014405811371
  107. C. O. Park and S. A. Akbar, "Ceramics for Chemical Sensing," J. Mater. Sci., 38 [23] 4611-37 (2003). https://doi.org/10.1023/A:1027402430153
  108. A. Rothschild and K. Yigal, "The Effect of Grain Size on the Sensitivity of Nanocrystalline Metal-Oxide Gas Sensors," J. Appl. Phys., 95 [11] 6374-80 (2004). https://doi.org/10.1063/1.1728314
  109. H. Ogawa, M. Nishikawa, and A. Abe, "Hall Measurement Studies and an Electrical Conduction Model of Tin Oxide Ultrafine Particle Films," J. Appl. Phys., 53 [6] 4448-55 (1982). https://doi.org/10.1063/1.331230
  110. M. Hubner, C. E. Simion, A. Tomescu-Stanoiu, S. Pokhrel, N. Barsan, and U. Weimar, "Influence of Humidity on CO Sensing with p-Type CuO Thick Film Gas Sensors," Sens. Actuators, B, 153 [2] 347-53 (2011). https://doi.org/10.1016/j.snb.2010.10.046
  111. W. Wang, Z. Li, W. Zheng, H. Huang, C. Wang, and J. Sun, "$Cr_2O_3$-Sensitized ZnO Electrospun Nanofibers Based Ethanol Detectors," Sens. Actuators, B, 143 [2] 754-58 (2010). https://doi.org/10.1016/j.snb.2009.10.016
  112. F. L. Meng, Z. Guo, and X. J. Huang, "Graphene-Based Hybrids for Chemiresistive Gas Sensors," TrAC, Trends Anal. Chem., 68 37-47 (2015). https://doi.org/10.1016/j.trac.2015.02.008
  113. F. Schedin, Ga. K. Eim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, "Detection of Individual Gas Molecules Adsorbed on Graphene," Nat. Mater., 6 [9] 652-55 (2007). https://doi.org/10.1038/nmat1967
  114. W. Yuan and G. Shi, "Graphene-Based Gas Sensors," J. Mater. Chem. A, 1 [35] 10078-91 (2013). https://doi.org/10.1039/c3ta11774j
  115. F. Yavari and N. Koratkar, "Graphene-Based Chemical Sensors," J. Phys. Chem. Lett., 3 [13] 1746-53 (2012). https://doi.org/10.1021/jz300358t
  116. S. Basu and P. Bhattacharyya, "Recent Developments on Graphene and Graphene Oxide Based Solid State Gas Sensors," Sens. Actuators, B, 173 1-21 (2012).
  117. J. H. Lee, A. Katoch, S. W. Choi, J. H. Kim, H. W. Kim, and S. S. Kim, "Extraordinary Improvement of Gas-Sensing Performances in $SnO_2$ Nanofibers Due to Creation of Local p-n Heterojunctions by Loading Reduced Graphene Oxide Nanosheets," ACS Appl. Mater. Interfaces, 7 3101-9 (2015). https://doi.org/10.1021/am5071656
  118. Z. U. Abideen, H. W. Kim, and S. S. Kim, "An Ultra-Sensitive Hydrogen Gas Sensor Using Reduced Graphene Oxide-Loaded ZnO Nanofibers," Chem. Commun., 51 15418-21 (2015). https://doi.org/10.1039/C5CC05370F
  119. D. Wang, M. Zhang, Z. Chen, H. Li, A. Chen, X. Wang, and J. Yang, "Enhanced Formaldehyde Sensing Properties of Hollow $SnO_2$ Nanofibers by Graphene Oxide. Sens. Actuators, B, 250 533-42 (2017). https://doi.org/10.1016/j.snb.2017.04.164
  120. W. Zeng, T. Liu, and Z. L. Wang, "Sensitivity Improvement of $TiO_2$-Doped $SnO_2$ to Volatile Organic Compounds," Phys. E, 43 [2] 633-8 (2010). https://doi.org/10.1016/j.physe.2010.10.010
  121. S. Ju, S. Kim, S. Mohammadi, D. B. Janes, Y. G. Ha, and A. Facchetti, "Interface Studies of ZnO Nanowire Transistors Using Low-Frequency Noise and Temperature-Dependent I-V Measurements," Appl. Phys. Lett., 92 [2] 022104 (2008). https://doi.org/10.1063/1.2830005
  122. C. A. Pan and T. P. Ma, "Work Function of $In_2O_3$ Film as Determined From Internal Photoemission," Appl. Phys. Lett., 37 [8] 714-16 (1980). https://doi.org/10.1063/1.92055
  123. P. Feng, Q. Wan, and T. H. Wang, "Contact-Controlled Sensing Properties of Flowerlike ZnO Nanostructures," Appl. Phys. Lett., 87 [21] 213111 (2005). https://doi.org/10.1063/1.2135391
  124. P. Feng, X. Y. Xue, Y. G. Liu, and T. H. Wang, "Highly Sensitive Ethanol Sensors Based on {100}-Bounded $In_2O_3$ Nanocrystals Due to Face Contact," Appl. Phys. Lett., 89 [24] 243514 (2006). https://doi.org/10.1063/1.2404935
  125. A. Kolmakov and M. Moskovits, "Chemical Sensing and Catalysis by One-Dimensional Metal-Oxide Nanostructures," Annu. Rev. Mater. Res., 34 151-80 (2004). https://doi.org/10.1146/annurev.matsci.34.040203.112141
  126. J. Gao, L. Wang, K. Kan, S. Xu, L. Jing, Ls. Iu, P. Shen, L. Li, and K. Shi, "One-Step Synthesis of Mesoporous $Al_2O_3$-$In_2O_3$ Nanofibres with Remarkable Gas-Sensing Performance to NOx at Room Temperature," J. Mater. Chem. A, 2 [4] 949-56 (2014). https://doi.org/10.1039/C3TA13943C
  127. W. Li, S. Ma, Y. Li, G. Yang, Y. Mao, J. Luo, D. Gengzang, X. Xu, and S. Yan, "Enhanced Ethanol Sensing Performance of Hollow ZnO-$SnO_2$ Core-Shell Nanofibers. Sens. Actuators, B, 211 392-402 (2015). https://doi.org/10.1016/j.snb.2015.01.090
  128. H. Du, J. Wang, Y. Sun, P. Yao, X. Li, and N. Yu, "Investigation of Gas Sensing Properties of $SnO_2$/$In_2O_3$ Composite Hetero-Nanofibers Treated by Oxygen Plasma," Sens. Actuators, B, 206 753-63 (2015). https://doi.org/10.1016/j.snb.2014.09.010
  129. X. Yang, V. Salles, Y. V. Kaneti, M. Liu, M. Maillard, C. Journet, X. Jiang, and A. Brioude, "Fabrication of Highly Sensitive Gas Sensor Based on Au Functionalized $WO_3$ Composite Nanofibers by Electrospinning," Sens. Actuators, B, 220 1112-9 (2015). https://doi.org/10.1016/j.snb.2015.05.121
  130. Y. Lin, W. Wei, Y. Li, F. Li, J. Zhou, D. Sun, Y. Chen, and S. Ruan, "Preparation of Pd Nanoparticle-Decorated Hollow $SnO_2$ Nanofibers and Their Enhanced Formaldehyde Sensing Properties," J. Alloys Compd., 651 690-98 (2015). https://doi.org/10.1016/j.jallcom.2015.08.174
  131. X. Xu, Y. Chen, G. Zhang, S. Ma, Y. Lu, H. Bian, and Q. Chen, "Highly Sensitive VOCs-Acetone Sensor Based on Ag-Decorated $SnO_2$ Hollow Nanofibers," J. Alloys Compd., 703 572-79 (2017). https://doi.org/10.1016/j.jallcom.2017.01.348
  132. N. Kim, H. Choi, J. Seon, D. Yang, J. Bae, J. Park, and I. D. Kim, "Highly Sensitive and Selective Hydrogen Sulfide and Toluene Sensors Using Pd Functionalized $WO_3$ Nanofibers for Potential Diagnosis of Halitosis and Lung Cancer," Sens. Actuators, B, 193 574-81 (2014). https://doi.org/10.1016/j.snb.2013.12.011
  133. A. Katoch, S. W. Choi, J. H. Kim, J. H. Lee, J. S. Lee, and S. S. Kim, "Importance of the Nanograin Size on the $H_2S$-Sensing Properties of ZnO-CuO Composite Nanofibers," Sens. Actuators, B, 214 111-16 (2015). https://doi.org/10.1016/j.snb.2015.03.012
  134. H. Wu, K. Kan, L. Wang, G. Zhang, Y. Yang, and H. Li, "Electrospinning of Mesoporous p-Type $In_2O_3$/$TiO_2$ Composite Nanofibers for Enhancing NOx Gas Sensing Properties at Room Temperature," CrystEngComm, 16 [38] 9116-24 (2014). https://doi.org/10.1039/C4CE01248H
  135. J. Cao, Z. Y. Wang, R. Wang, S. Liu, T. Fei, and L. J. Wang, "Synthesis of Core-Shell ${\alpha}-Fe_2O_3@NiO$ Nanofibers with Hollow Structures and Their Enhanced HCHO Sensing Properties," J. Mater. Chem. A, 3 5635-41 (2015). https://doi.org/10.1039/C4TA06892K
  136. Y. Liu, X. Sun, B. Li, and Y. Lei, "Tunable p-n Transition Behaviour of a p-$La_{0.67}Sr_{0.33}MnO_3/n$-$CeO_2$ Nanofibers Heterojunction for the Development of Selective High Temperature Propane Ssensors," J. Mater. Chem. A, 2 11651-59 (2014). https://doi.org/10.1039/C4TA01103A
  137. C. Li, C. H. Feng, F. D. Qu, J. Liu, L. H. Zhu, and Y. Lin, "Electrospun Nanofibers of p-Type NiO/n-Type ZnO Heterojunction with Different NiO Content and Its Influence on Trimethylamine Sensing Properties," Sens. Actuators, B, 207 90-6 (2015). https://doi.org/10.1016/j.snb.2014.10.035
  138. L. Liu, Y. Zhang, G. G. Wang, S. C. Li, L. Y. Wang, and Y. Han, "High Toluene Sensing Pproperties of NiO-$SnO_2$ Composite Nanofiber Sensors Operating at 330 Degrees C," Sens. Actuators, B, 160 448-54 (2011). https://doi.org/10.1016/j.snb.2011.08.007
  139. X. Liang, T. H. Kim, J. W. Yoon, C. H. Kwak, and J. H. Lee, "Ultrasensitive and Ultraselective Detection of $H_2S$ Using Electrospun CuO-Loaded $In_2O_3$ Nanofiber Sensors Assisted by Pulse Hheating," Sens. Actuators, B, 209 934-42 (2015). https://doi.org/10.1016/j.snb.2014.11.130
  140. Y. Zheng, J. Wang, and P. Yao, "Formaldehyde Sensing Properties of Electrospun NiO-Doped $SnO_2$ Nanofibers," Sens. Actuators, B, 156 723-30 (2011). https://doi.org/10.1016/j.snb.2011.02.026
  141. A. Katoch, S. W. Choi, G. J. Sun, and S. S. Kim, "An Approach to Detecting a Reducing Gas by Radial Modulation of Electron-Depleted Shells in Core-Shell Nanofibers," J. Mater. Chem. A, 1 13588-96 (2013). https://doi.org/10.1039/c3ta13087h
  142. A. Yang, X. Tao, R. Wang, S. Lee, and C. Surya, "Room Temperature Gas Sensing Properties of $SnO_2$/Multiwall-Carbon-Nanotube Composite Nanofibers," Appl. Phys. Lett., 91 133110-13 (2007). https://doi.org/10.1063/1.2783479
  143. Y. H. Li, J. Gong, G. H. He, and Y. L. Deng, "Fabrication of Polyaniline/Titanium Dioxide Composite Nnanofibers for Gas Sensing Application," Mater. Chem. Phys., 129 477-82 (2011). https://doi.org/10.1016/j.matchemphys.2011.04.045
  144. W. Tang, J. Wang, P. J. Yao, and X. G. Li, "Hollow Hierarchical $SnO_2$-ZnO Composite Nanofibers with Hheterostructure Based on Electrospinning Method for Detecting Methanol," Sens. Actuators, B, 192 543-49 (2014). https://doi.org/10.1016/j.snb.2013.11.003
  145. T. A. Ho, T. S. Jun, and Y. S. Kim, "Material and $NH_3$-Sensing Properties of Polypyrrole-Coated Tungsten Oxide Nanofibers," Sens. Actuators, B, 185 523-29 (2013). https://doi.org/10.1016/j.snb.2013.05.039
  146. S. Yan and Q. S. Wu, "Micropored Sn-$SnO_2$/Carbon Heterostructure Nanofibers and Their Highly Sensitive and Selective $C_2H_5OH$ Gas Sensing Performance," Sens. Actuators, B, 205 329-37 (2014). https://doi.org/10.1016/j.snb.2014.08.062
  147. J. A. Deng, B. Yu, Z. Lou, L. L. Wang, R. Wang, and T. Zhang, "Facile Synthesis and Enhanced Ethanol Sensing Properties of the Brush-Like ZnO-$TiO_2$ Heterojunctions Nanofibers," Sens. Actuators, B, 184 21-6 (2013). https://doi.org/10.1016/j.snb.2013.04.020
  148. Q. Qi, Y. C. Zou, M.-H. Fan, Y. P. Liu, S. Gao, and P. P. Wang, "Trimethylamine Sensors with Enhanced Anti- Humidity Ability Fabricated From $La_{0.7}Sr_{0.3}FeO_3$ Coated $In_2O_3$-$SnO_2$ Ccomposite Nanofibers," Sens. Actuators, B, 203 111-17 (2014). https://doi.org/10.1016/j.snb.2014.06.082
  149. Q. Qi, P. P. Wang, J. Zhao, L. L. Feng, L. J. Zhou, and R. F. Xuan, "$SnO_2$ Nanoparticle-Coated $In_2O_3$ Nanofibers with Improved $NH_3$ Sensing Properties," Sens. Actuators, B, 194 440-46 (2014). https://doi.org/10.1016/j.snb.2013.12.115
  150. B. B. Wang, X. X. Fu, F. Liu, S. L. Shi, J. P. Cheng, and X. B. Zhang, "Fabrication and Gas Sensing Pproperties of Hollow Core-Shell $SnO_2$/${\alpha}-Fe_2O_3$ Heterogeneous Structures," J. Alloys Compd., 587 82-9 (2014). https://doi.org/10.1016/j.jallcom.2013.10.176

Cited by

  1. Gas Sensing Layer pp.0974-780X, 2018, https://doi.org/10.1080/03772063.2018.1502625
  2. Enhancing Gas Response Characteristics of Mixed Metal Oxide Gas Sensors vol.55, pp.1, 2018, https://doi.org/10.4191/kcers.2018.55.1.10
  3. Enhanced Hydrogen Detection in ppb-Level by Electrospun SnO2-Loaded ZnO Nanofibers vol.19, pp.3, 2019, https://doi.org/10.3390/s19030726
  4. Discrimination of Gasoline and Diesel Fuels Using Oxide Semiconductor Gas Sensors vol.27, pp.4, 2018, https://doi.org/10.5369/jsst.2018.27.4.221
  5. Effect of temperature on gas sensing properties of lithium ( L i ) substituted ( N i F e 2 O 4 ) nickel ferrite thin film vol.1177, pp.None, 2017, https://doi.org/10.1016/j.molstruc.2018.09.085
  6. 반도체 탄소 나노재료 기반 상온 동작용 가스센서 vol.22, pp.1, 2017, https://doi.org/10.31613/ceramist.2019.22.1.08
  7. Comparative Study on the Preparation and Gas Sensing Properties of Reduced Graphene Oxide/SnO2 Binary Nanocomposite for Detection of Acetone in Exhaled Breath vol.91, pp.8, 2017, https://doi.org/10.1021/acs.analchem.8b05670
  8. Fabrication of a kinetically sprayed CuO ultra-thin film to evaluate CO gas sensing parameters vol.43, pp.20, 2017, https://doi.org/10.1039/c9nj00289h
  9. Electrospinning production of nanofibrous membranes vol.17, pp.2, 2017, https://doi.org/10.1007/s10311-018-00838-w
  10. Electrospun Ceramic Nanofibers and Hybrid-Nanofiber Composites for Gas Sensing vol.2, pp.7, 2019, https://doi.org/10.1021/acsanm.9b01176
  11. Thermal properties of electrospun polyvinylpyrrolidone/titanium tetraisopropoxide composite nanofibers vol.137, pp.4, 2017, https://doi.org/10.1007/s10973-019-08030-0
  12. ppb-Level Selective Hydrogen Gas Detection of Pd-Functionalized In2O3-Loaded ZnO Nanofiber Gas Sensors vol.19, pp.19, 2017, https://doi.org/10.3390/s19194276
  13. Investigation of Ag-Doping in Kinetically Sprayed SnO2 Composite Film and Its Application to Gas Sensor vol.20, pp.11, 2017, https://doi.org/10.1007/s12541-019-00208-8
  14. Nanostructured Semiconducting Metal Oxide Gas Sensors for Acetaldehyde Detection vol.7, pp.4, 2017, https://doi.org/10.3390/chemosensors7040056
  15. Resistive gas sensors based on metal-oxide nanowires vol.126, pp.24, 2017, https://doi.org/10.1063/1.5118805
  16. Enhancing room temperature ethanol sensing using electrospun Ag-doped SnO2-ZnO nanofibers vol.31, pp.20, 2017, https://doi.org/10.1007/s10854-020-04276-9
  17. Electrospinning metal Phosphide/Carbon nanofibers from Phytic Acid for hydrogen evolution reaction catalysts vol.31, pp.41, 2017, https://doi.org/10.1088/1361-6528/ab9e94
  18. A review on metal-oxide based p-n and n-n heterostructured nano-materials for gas sensing applications vol.2, pp.None, 2021, https://doi.org/10.1016/j.sintl.2021.100085
  19. The Role of Electrospun Nanomaterials in the Future of Energy and Environment vol.14, pp.3, 2017, https://doi.org/10.3390/ma14030558
  20. Reduced Graphene Oxide (rGO)-Loaded Metal-Oxide Nanofiber Gas Sensors: An Overview vol.21, pp.4, 2017, https://doi.org/10.3390/s21041352
  21. Fabrication of Carbon Nanofibers Decorated with Various Kinds of Metal Oxides for Battery Applications vol.14, pp.5, 2021, https://doi.org/10.3390/en14051353
  22. Metal Oxide-Based Photocatalytic Paper: A Green Alternative for Environmental Remediation vol.11, pp.4, 2017, https://doi.org/10.3390/catal11040504
  23. Comparative study on the gas-sensing performance of ZnO/SnO2 external and ZnO–SnO2 internal heterojunctions for ppb H2S and NO2 gases detection vol.334, pp.None, 2017, https://doi.org/10.1016/j.snb.2021.129606
  24. Electrospun Metal Oxide Nanofibers and Their Conductometric Gas Sensor Application. Part 1: Nanofibers and Features of Their Forming vol.11, pp.6, 2017, https://doi.org/10.3390/nano11061544
  25. Electrospun Metal Oxide Nanofibers and Their Conductometric Gas Sensor Application. Part 2: Gas Sensors and Their Advantages and Limitations vol.11, pp.6, 2017, https://doi.org/10.3390/nano11061555
  26. Electrospun YSZ/silica nanofibers with controlled fiber diameters for air/water filtration media vol.58, pp.4, 2017, https://doi.org/10.1007/s43207-021-00124-6
  27. 1D Metal Oxide Semiconductor Materials for Chemiresistive Gas Sensors: A Review vol.7, pp.9, 2017, https://doi.org/10.1002/aelm.202100271
  28. Highly sensitive and selective sub ppb level acetone sensing platform based on Co3O4-ZnO heterojunction composites vol.36, pp.9, 2017, https://doi.org/10.1088/1361-6641/ac17a7
  29. Insights into nano-heterostructured materials for gas sensing: a review vol.4, pp.3, 2021, https://doi.org/10.1088/2399-7532/ac1732
  30. Effect of Ag Addition on the Gas-Sensing Properties of Nanostructured Resistive-Based Gas Sensors: An Overview vol.21, pp.19, 2021, https://doi.org/10.3390/s21196454
  31. Electrospun Nanofibers for Quartz Crystal Microbalance Gas Sensors: A Review vol.4, pp.10, 2017, https://doi.org/10.1021/acsanm.1c01895
  32. Metal-Organic-Frameworks: Low Temperature Gas Sensing and Air Quality Monitoring vol.9, pp.11, 2017, https://doi.org/10.3390/chemosensors9110316
  33. Nanotechnology in Fire Protection-Application and Requirements vol.14, pp.24, 2021, https://doi.org/10.3390/ma14247849
  34. State-of-the-Art Research on Chemiresistive Gas Sensors in Korea: Emphasis on the Achievements of the Research Labs of Professors Hyoun Woo Kim and Sang Sub Kim vol.22, pp.1, 2017, https://doi.org/10.3390/s22010061
  35. A novel electrochemical sensor for the detection of fipronil and its toxic metabolite fipronil sulfone using TiO2-polytriazine imide submicrostructured composite as an efficient electrocatalyst vol.238, pp.p2, 2017, https://doi.org/10.1016/j.talanta.2021.123025
  36. One‐dimensional electrospun ceramic nanomaterials and their sensing applications vol.105, pp.2, 2017, https://doi.org/10.1111/jace.18140