• 제목/요약/키워드: Gas Sensors

검색결과 1,058건 처리시간 0.031초

온도 가스 감지 다기능성 세라믹 복합 센서 (Temperature and Gas Sensing Multifunctional Ceramic Sensors)

  • 문희규;심영석;김도홍;류정호;김진상;박형호;박동수;윤석진;장호원
    • 한국전기전자재료학회논문지
    • /
    • 제25권8호
    • /
    • pp.646-650
    • /
    • 2012
  • Multifunctional structures with two kinds of materials have been intensively investigated in order to improve their electrical characteristic with two functions simultaneously. However, the research regarding of multifunctional ceramic sensor is still in a preliminary stage and how to integrate them with low-cost and high-yield mass production process remains a challenge issue. In this study, we fabricated the multifunctional ceramic sensor composed of temperature and gas sensors. Moreover, we investigated the CO sensing properties of three dimensional nanostuctured $Nb_2O_5$ thin film gas sensors fabricated with silica ($SiO_2$ nanosphere (${\O}$= 750 nm). Compared to plain films, the nanostructured films show enhanced gas sensing of greater sensitivity and a faster response. This result reveals that significantly increased sensitivity is an increase in the effective surface area for the adsorption of gas molecules.

White-Cell 구조를 응용한 비분산 적외선 이산화탄소 센서의 온도특성 (Temperature Dependency of Non-dispersive Infrared Carbon Dioxide Gas Sensor by Using White-Cell Structure)

  • 이승환;박영환;이재경
    • 센서학회지
    • /
    • 제25권5호
    • /
    • pp.377-381
    • /
    • 2016
  • NDIR $CO_2$ gas sensor was prototyped with ASIC implemented thermopile sensor which included temperature sensor and White-Cell structure in this paper. The temperature dependency of dual infrared sensors ($CO_2$ and reference IR sensors) has been characterized and their output voltage ratios according to the temperature and gas concentration were presented in this paper for achieving temperature compensation algorithm. The initial output voltages of NDIR $CO_2$ gas and reference IR sensors showed $3^{rd}$ order polynomial and linear output voltages according to the variation of ambient temperatures from 253 K to 333 K, respectively. The output voltages of temperature sensor presented a linear dependency according to the ambient temperature and could be described with V(T) = -3.0069+0.0145T(V). The characteristics of output voltage ratios could be modeled with five parameters which are dependent upon the ambient temperatures and gas concentration. The estimated $CO_2$ concentrations showed relatively high error below 300 ppm (maximum 572 % at 7 ppm $CO_2$ concentration), however, as the concentration increased from 500 ppm to 2,000 ppm, the overall estimated errors of $CO_2$ concentrations were less than ${\pm}10%$ in this research.

Polystyrene 입자 정렬을 이용한 성게 구조 ZnO 나노막대 가스 센서의 특성 (Properties of Urchin-Structured Zinc Oxide Nanorods Gas Sensor by Using Polystyrene Sphere Array)

  • 김종우;김도훈;기태훈;박정혁;명재민
    • 한국재료학회지
    • /
    • 제27권12호
    • /
    • pp.658-663
    • /
    • 2017
  • Urchin-structured zinc oxide(ZnO) nanorod(NR) gas sensors were successfully demonstrated on a polyimide(PI) substrate, using single wall carbon nanotubes(SWCNTs) as the electrode. The ZnO NRs were grown with ZnO shells arranged at regular intervals to form a network structure with maximized surface area. The high surface area and numerous junctions of the NR network structure was the key to excellent gas sensing performance. Moreover, the SWCNTs formed a junction barrier with the ZnO which further improved sensor characteristics. The fabricated urchin-structured ZnO NR gas sensors exhibited superior performance upon $NO_2$ exposure with a stable response of 110, fast rise and decay times of 38 and 24 sec, respectively. Comparative analyses revealed that the high performance of the sensors was due to a combination of high surface area, numerous active junction points, and the use of the SWCNTs electrode. Furthermore, the urchin-structured ZnO NR gas sensors showed sustainable mechanical stability. Although degradation of the devices progressed during repeated flexibility tests, the sensors were still operational even after 10000 cycles of a bending test with a radius of curvature of 5 mm.

화염 분무 열분해법으로 합성된 Cr-Co3O4 나노입자 자일렌 가스센서 (Xylene Sensor Using Cr-doped Cr-Co3O4 Nanoparticles Prepared by Flame Spray Pyrolysis)

  • 정성용;조영무;강윤찬;이종흔
    • 센서학회지
    • /
    • 제29권2호
    • /
    • pp.112-117
    • /
    • 2020
  • Xylene is a hazardous volatile organic compound that should be precisely measured to monitor indoor air quality. However, the selective and sensitive detection of ppm-level xylene using oxide-semiconductor gas sensors remains a challenge. In this study, pure and Cr-doped Co3O4 nanoparticles (NPs) were prepared using flame spray pyrolysis, and their gas-sensing characteristics to 5-ppm xylene at 250 ℃ were investigated. The 4 at% Cr-doped Co3O4 NPs exhibited a high gas response to 5-ppm xylene (resistance ratio to gas and air = 39.1) and negligible cross-responses to other representative and ubiquitous indoor pollutants such as ethanol, benzene, formaldehyde, carbon monoxide, and ammonia. In this paper, the enhancement of the gas response and selectivity of Co3O4 NPs to xylene by Cr doping was discussed in relation to the catalytic promotion of the gas-sensing reaction. This sensor can be used to monitor indoor xylene.

Design of a Smart Gas Sensor System for Room Air-Cleaner of Automobile (Thick-Film Metal Oxide Semiconductor Gas Sensor)

  • Kim, Jung-Yoon;Shin, Tae-Zi;Yang, Myung-Kook
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권3호
    • /
    • pp.408-412
    • /
    • 2007
  • It is almost impossible to secure the reproductibility and stability of a commercial Thick-Film Metal Oxide Semiconductor Gas Sensor since it is very difficult to keep the consistency of the manufacturing environment. Thus it is widely known that the general Semiconductor-Oxide Gas Sensors are not appropriate for precise measurement systems. In this paper, the output characteristic analyzer of the various Thick-Film Metal Oxide Semiconductor Gas Sensors that are used to recognize the air quality within an automobile are proposed and examined. The analyzed output characters in a normal air chamber are grouped by sensor ranks and used to fill out the characteristic table of the Thick-Film Metal Oxide Semiconductor Gas Sensors. The characteristic table is used to determine the rank of the sensor that is equipped in the current air cleaner system of an automobile. The proposed air control system can also adapt the on-demand operation that recognizes the history of the passenger's manual-control.

접촉연소식 가스 센서를 이용한 감도특성 (Gas Detecting Characteristics Using Catalytic Combustion Type Gas Sensor)

  • 윤헌주;고길영;이종필;홍진웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.773-777
    • /
    • 2002
  • In this study, we analyzed the LPG and LNG sensitivity measurement and voltage variation using catalytic type gas sensor characteristics in catalytic combustion type gas detecter sensors. gas detector shall operate as intended when exposed for 24 hours to air having a relative humidity of 0~85 percent at a temperature of $20[{\mu}m]$ and humidity of 45 percent at a temperature of $-10{\sim}40[^{\circ}C]$ the gas detecter sensors are to be subjected to operation for 210 days in an area that has been detemined to be equivalent to a typical residential atmosphere with an air velocity of 50 [cm/sec]. The source of energy for a gas detector sensors employing a supplementary basic circuit is energized from a separate source of supply direct applied voltage 2.1[V], 2.2[V], 2.3[V]. As a result, it was confirmed that the relative humidity and temperature by regression each analysis, compared to the LPG characteristic graph and methane characteristics graph by a relative humidity of 0 ~ 85 [%] at a temperature range of $-10{\sim}40[^{\circ}C]$ show a similar linear pattern on the whore.

  • PDF

Synthesis of Nanoporous Metal Oxide Films Using Anodic Oxidation and Their Gas Sensing Properties

  • Suh, Jun Min;Kim, Do Hong;Jang, Ho Won
    • 센서학회지
    • /
    • 제27권1호
    • /
    • pp.13-20
    • /
    • 2018
  • Gas sensors based on metal oxide semiconductors are used in numerous applications including monitoring indoor air quality and detecting harmful substances like volatile organic compounds. Nanostructures, for example, nanoparticles, nanotubes, nanodomes, and nanofibers have been widely utilized to improve gas sensing properties of metal oxide semiconductors, and this increases the effective surface area, resulting in participation of more target gas molecules in the surface reaction. In the recent times, 1-dimensional (1D) metal oxide nanostructures fabricated using anodic oxidation have attracted great attention due to their high surface-to-volume ratio with large-area uniformity, reproducibility, and capability of synthesis under ambient air and pressure, leading to cost-effectiveness. Here, we provide a brief overview of 1D metal oxide nanostructures fabricated by anodic oxidation and their gas sensing properties. In addition, recent progress on thin film-based anodic oxidation for application in gas sensors is introduced.

웨어러블용 Nylon-Yarn NOx 가스 센서의 검출 온도 변화에 따른 열 특성 시뮬레이션 (Thermal Characteristics Simulation with Detecting Temperature for the Wearable Nylon-Yarn NOx Gas Sensors)

  • 장경욱
    • 한국전기전자재료학회논문지
    • /
    • 제33권4호
    • /
    • pp.321-325
    • /
    • 2020
  • Atmospheric environmental problems have a major impact on human health and lifestyle. In humans, inhalation of nitrogen oxides causes respiratory diseases, such as bronchitis. In this paper, thermal analysis of a gas sensor was carried out to design and fabricate a wearable nylon-yarn gas sensor for the detection of NOx gas. In the thermal analysis method, the thermal diffusion process was analyzed while operating the sensors at 40 and 60℃ to secure a temperature range that does not cause thermal runaway due to temperature in the operating environment. Thermal diffusion analysis was performed using the COMSOL software. The thermal analysis results could be useful for analyzing gas adsorption and desorption, as well as the design of gas sensors. The thermal energy diffusion rate increased slightly from 10.05 to 10.1 K/mm as the sensor temperature increased from 40 to 60℃. It was concluded that the sensor could be operated in this temperature range without thermal breakdown.

CNT:ZnO 가스 센서의 제조와 특성 연구 (Characteristics and Preparation of CNT:ZnO Gas Sensors)

  • 윤소진;유일
    • 한국전기전자재료학회논문지
    • /
    • 제27권7호
    • /
    • pp.468-471
    • /
    • 2014
  • The effects of ZnO coating on the sensing properties of CNT:ZnO based gas sensors were studied for $H_2S$ gas. The nano ZnO sensing materials were grown by hydrothermal reaction method. CNT:ZnO was prepared by ball-mill method. The mole range of nano ZnO coating on CNT surface was from 0 to 10%. The CNT:ZnO gas sensors were fabricated by a screen printing method on alumina substrates. The structural and morphological properties of the CNT:ZnO sensing materials were investigated by XRD, EDS, SEM and TEM. The XRD patterns showed that CNT:ZnO powders with hexagonal structure were grown with (002) dominant peak. The diameter of CNT from TEM was about 28 nm.

기체온도 측정을 위한 초음파 계측 (A ultrasonic technique for measuring gas temperature)

  • 최영;윤천한;전흥신
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1998년도 추계 학술발표회 논문집
    • /
    • pp.150-160
    • /
    • 1998
  • Measuring temperature with ultrasonic wave apparatus is desirable in the case of both below 300$0^{\circ}C$ and ideal gas because of the fact that the temperature of gas is the function of only sound velocity. In this study, being used a heatable wind channel and a blower, the variation of temperature is observed in accordance with diverse flow rate(air velocity). The frequency modulation method is used to measure the temperature which is varying in hot air flow till 10$0^{\circ}C$. The length changed in the position of ultrasonic sensors is considered. Also, the effects of air velocity at the same temperature and various facing angles of ultrasonic sensors are considered. As a result of this study, it has been found that the temperature in gas flow is correctly measured regardless of both the distance of ultrasonic sensors and the variation of air velocity, and that there is just a little influence of facing angles.

  • PDF