• Title/Summary/Keyword: Gas Lubrication

Search Result 126, Processing Time 0.018 seconds

A Lubrication Analysis of Gas Mechanical Face Seals using a High-Order Shape Function (고차 형상함수를 이용한 가스 미케니컬 페이스 시일의 윤활해석)

  • 이안성;양재훈;최동훈
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.204-211
    • /
    • 2001
  • For the treatment of high compressibility number in the Reynolds equation, a new class of exponential high-order shape functions has been recently introduced in the literatures. In this paper a FE lubrication analysis method of high speed gas mechanical face seals is developed, implementing these shape functions. Their validity and usefulness are presented using 1-D gas bearing models. And a validation of developed 2-D analysis code is shown with a gas flat and spiral groove face seal models.

  • PDF

FE Lubrication Analyses of High-Speed Gas-Levitation Applications using High-Order Shape Function (고차 형상함수를 이용한 고속 가스부상 FE 윤활해석)

  • 이안성;김준호
    • Tribology and Lubricants
    • /
    • v.20 no.1
    • /
    • pp.14-20
    • /
    • 2004
  • In high-speed gas-levitation applications a high compressibility number may bring a numerical difficulty in predicting generated pressure profiles accurately as it causes erroneous sudden pressure overshoot and oscillation in the trailing-edge. To treat the problem, in this study an exact exponential high-order shape function is introduced in the FE lubrication analyses. It is shown by various example applications that the high-order shape function scheme can successfully subdue undesired pressure overshoot and oscillation.

Lubrication Performance Analysis of A Low-Speed Dry Gas Seal having An Inner Circular Groove (내부 원형 그루브를 갖는 저속 드라이 가스 시일의 윤활 성능해석)

  • Lee An Sung;Kim Jun Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.201-208
    • /
    • 2004
  • In this study a general Galerkin FE lubrication analysis method was utilized to analyze the complex lubrication performance of a spiral groove seal having an additional inner circular groove, which was designed for a chemical process mixer operating at a low speed of the maximum 500 rpm. Equilibrium seal clearance analyses under varying outer pressure revealed that the seal maintains a certain levitation seal clearance under the outer pressure of more than about 1.5 bar, regardless of a rotating speed. Also, under the normal outer pressure of 11 bar, the axial stiffness of the seal was predicted to have a high value of more than 7.0e+07 N/m, regardless of a rotating speed and thereby, the seal is expected to maintain a stable thickness of lubrication film under a certain external excitation acting.

  • PDF

Lubrication Characteristics of High-Speed Ball Bearing with Oil-Jet Lubrication (Oil-Jet 윤활시 가스터어빈용 고속 Ball Bearing 윤활특성)

  • 김기태
    • Tribology and Lubricants
    • /
    • v.12 no.4
    • /
    • pp.28-34
    • /
    • 1996
  • The lubrication characteristics of high-speed ball bearings have been investigated empirically using 45mm bore split inner ring ball bearings employed in small industrial gas turbine engines with oil-jet lubrication method. For the close structural simulation, experiments carried out with bearing mounting supports of real engines, such as bearing housings and oil nozzle assemblies with squeeze film dampers. Thus the results of tests can be directly applied to the design and the development of gas turbine engines. Testing was done by varying operating speeds, axial load on bearings, and lubricant flow rates. During testing, the temperature of bearing at outer-ring face, the power consumption of the driving motor, and the rotating resistance of the bearing were measured. From this study, the representative factors for lubrication characteristics at high speed was found, and the most important one was not operating speed but axial load up to 1.95 million dmN speed and 2969 N axial load. Furthermore, the detailed variation of the rotational resistance of the bearing could be visualized by measuring the change of the radial load under the bearing supports. The rotational resistance consists of the frictional resistance and the bearing-cavity oil resistance.

Lubrication Performance Analyses of Spiral Groove Dry Gas Seals - Part I: EE Analysis and Basic Performance Evaluation (스파이럴 그루브 드라이 가스 시일의 윤활 성능해석 - Part I: 유한요소 해석 및 기본 성능평가)

  • Lee An Sung;Yang Jae-Hun;Choi Dong-Hoon
    • Tribology and Lubricants
    • /
    • v.20 no.2
    • /
    • pp.58-67
    • /
    • 2004
  • In this study a general Galerkin FE lubrication analysis method for the compressible Reynolds equation in cylindrical coordinates is presented. Then, the method is applied for analyzing lubrication performances of spiral groove dry gas seals. The effects of toning and number of groove on performance indices are evaluated at low and high rotating speeds: 3,600 and 15,000 rpm. Results show that, for the primary design consideration performances such as the opening force and axial and angular stiffnesses, a negative or small coning and a large number of groove are preferred.

Oil-Jet Ball 윤활시 가스터빈용 고속 Ball Bearing 윤활특성

  • 김기태;권우성
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.86-93
    • /
    • 1996
  • The lubrication characteristics of high-speed ball bearings has been investigated empirically using 45mm bore split inner ring ball bearings employed in small industrial gas turbine engines with oil-jet lubrication method. For the close structural simulation, experiments carried out with bearing mounting supports of real engines, such as bearing housings and oil nozzle assemblies with squeeze film dampers. Thus the results of tests can be directly applied to the design and the development of gas turbine engines. Testing was done by varying operating speeds, axial load on bearings, and lubricant flowrates. During testing, the temperature of bearing at outer-ring face, the power consumption of the driving motor, and the rotating resistance of the bearing were measured. From this study, the representative factors for lubrication characteristics at high speed was found, and the most important one was not operating speed but axial load up to 1.95 million dmN speed and 303 kgf axial load. Furthermore, the detailed variation of the rotational resistance of the bearing could be visualized by measuring the change of the radial load under the bearing supports. The rotational resistance consists of the frictional resistance and the bearing-cavity oil resistance.

  • PDF

Analysis of computational fluid dynamics on design of nozzle for integrated cryogenic gas and MQL(minimum quantity lubrication) (극저온 가스와 MQL(minimum quantity lubrication)의 복합 분사를 위한 하이브리드 노즐 설계에 관한 전산유체역학 해석)

  • Song, Ki-Hyeok;Shin, Bong-Cheol;Yoon, Gil-Sang;Ha, Seok-Jae
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.41-47
    • /
    • 2019
  • In conventional machining, the use of cutting fluid is essential to reduce cutting heat and to improve machining quality. However, to increase the performance of cutting fluids, various chemical components have been added. However, these chemical components during machining have a negative impact on the health of workers and cutting environment. In current machining, environment-friendly machining is conducted using MQL (minimum quantity lubrication) or cryogenic air spraying to minimize the harmful effects. In this study, the injection nozzle that can combined injecting minimum quantity lubrication(MQL) and cryogenic gas was designed and the shape optimization was performed by using computational fluid dynamics(CFD) and design of experiment(DOE). Performance verification was performed for the designed nozzle. The diameter of the sprayed fluid at a distance of 30 mm from the nozzle was analyzed to be 21 mm. It was also analyzed to lower the aerosol temperature to about 260~270K.

Lubrication Performance Analysis and Experiment of a Low-Speed Dry Gas Seal having an Inner Circular Groove (내부 원형 그루브를 갖는 저속 드라이 가스 시일의 윤활 성능해석 및 실험)

  • Lee, An-Sung;Kim, Jun-Ho
    • Tribology and Lubricants
    • /
    • v.21 no.2
    • /
    • pp.53-62
    • /
    • 2005
  • In this study a general Galerkin FE lubrication analysis method was utilized to analyze the complex lubrication performance of a spiral groove seal having an additional inner circular groove, which was designed for a chemical process mixer operating at a low speed of the maximum 500 rpm. Equilibrium seal clearance analyses under varying outer pressure revealed that the seal maintains a certain levitation seal clearance under the outer pressure of more than about 1.5 bar, regardless of a rotating speed. Also, under the normal outer pressure of 11 bar, the axial stiffness of the seal was predicted to have a high value of more than 7.0 e + 07 N/m, regardless of a rotating speed and thereby, the seal is expected to maintain a stable thickness of lubrication film under a certain external excitation acting. A seal levitation test rig was designed and constructed. Experimental results at 500 rpm agreed well with analytical predictions and the applied lubrication analysis method was verified.

A Modified Method for the Boundary Fitted Coordinate Systems to Analysis of Gas Bearings Considering Upstream In Extremely High Compressibility Number Region

  • Khan, Polina;Hwang, Pyung;Park, Sang-Shin
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.105-106
    • /
    • 2002
  • An expanded scheme of direct numerical solution method for solving the Reynolds' equation in the boundary fitted coordinate systems for the gas lubrication with ultra low clearance is presented. Skewed slider is calculated by this scheme and results are compared to the original direct numerical solution. The modified scheme has advantages in stability in high compressibility number region. At the lower A region the difference in results of original and modified method is several percents.

  • PDF

A Basic Study on Piston-Ring Pack (피스톤-링 팩에 관한 기초 연구)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.21 no.2
    • /
    • pp.83-92
    • /
    • 2005
  • A piston assembly is very important because it directly receives the energy generated during combustion process. Surely, the friction and lubrication of piston-ring pack do an important role in the performance and fuel economy of an engine. In fact, the friction loss in piston-ring pack is the biggest portion to the whole engine friction. Therefore, the improvement of lubrication quality and friction loss in piston-ring pack will be directly related with the improvement in the performance and fuel economy of an engine. Meanwhile, the oil consumption and blow-by gas through piston-cylinder-ring crevices have to be controlled as less as possible. In these two aspects, the study on the optimized design of piston-ring pack has to be carried out. In this study, for the efficient design of piston-ring pack, it is focused to develop a basic computer program that predicts the inter-ring pressure, the motion of ring and the blow-by gas through a crevice volume model between adjacent rings, and the oil film thickness and the friction computed by lubrication theories.