• Title/Summary/Keyword: Gas Furnace

Search Result 605, Processing Time 0.034 seconds

Convergent Study on the Hydro-Gas Reforming Cyclo-Incinerator (물 가스 개질 고속선회 소각로에 관한 융합연구)

  • Han, Doo-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.231-236
    • /
    • 2020
  • A water reforming reaction high-speed turning incinerator test facility was prepared. The reforming reaction chamber and the combustion chamber were directly connected. The incinerator and dust collecting device were integrated and made into a double bulkhead type air cooling structure. The blower is built into the dust collector to improve spatial efficiency. An axial flow type multi-stage dust collector was applied by collecting dust by using a plurality of dust collecting bins attached to the side of the dust collecting part. As a result of measuring dioxin among the exhausted gases, results below the standard value were obtained. As a result of measuring exhaust gas and heavy metals, results were obtained below the environmental standard.

Study on Coal Combustion Characteristics with 1MWth Test Facility (1MWth 실험연소로를 이용한 석탄의 연소특성 연구)

  • Jang, Gil Hong;Chang, In Gab;Jeong, Seok Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1464-1472
    • /
    • 1999
  • Design and operation of $1MW_{th}$ pulverized coal combustion testing facility are described. Also the influence of air staging on NOx emission and burnout of coal flames was investigated in this facility. The test facility consisted of coal feeding system, firing system and flue gas treatment system. A top-fired externally air staging burner was adopted in order to avoid influence of gravity on the coal particles and for easy maintenance. Distribution of temperature and chemical species concentration of coal flames could be measured in vertical pass of furnace. Main fuel was pulverized (83.4% less than $80{\mu}m$) Australian high bituminous coal. From variety of test conditions, overall excess air ratio was selected at 1.2(20% excess air). Tho study showed that increasing the staged air resulted in lower NOx omission, and it was suggested to be more than 40% of the total combustion air for the substantial NOx reduction. Sufficient burnout was not achievable when NOx emission was less than 500ppm. Also, the amount of core air did not influence tho NOx reduction.

An Experimental Study on the Characteristics of Oxygen Combustion of Pulverized Coal and the $NO_x$ Formation using TGA/DSC and DTF (TGA/DSC, DTF를 이용한 미분탄의 산소 연소 및 $NO_x$ 배출 특성에 관한 실험적 연구)

  • Lee, Dae-Keun;Seo, Dong-Myung;Noh, Dong-Soon;Ko, Chang-Bog
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.54-59
    • /
    • 2007
  • In a view of capturing $CO_2$ as a greenhouse gas, an experimental study was conducted on the combustion characteristics of pulverized coal in $O_2$/$CO_2$ environment using TGA/DSC and DTF facilities. The effects of gas composition and concentration on the processes of devolatilization and char burning experienced by coal particles in combustion furnace and on the concentration of products such as $CO_2$, CO and $NO_x$ were observed using TGA/DSC and DTF respectively. As results, it were found that the rate of devolitilation is nearly independent on the $O_2$ concentration if it is over 20% but the char burning rate is a sensitive function of $O_2$ percent, and the two rates can be controlled by $O_2$ concentration in order to be similar with those of air combustion case. It was also found that high concentration $CO_2$ can be captured by oxy-coal combustion and high concentration of CO and low value of $NO_x$ are exhausted in that case. Additionally, NO reducing reaction by CO with char as catalyst was observed and a meaningful results were obtained.

  • PDF

HELIUM CONCENTRATION DECREASE DUE TO AIR ENTRAINMENT INTO GLASS FIBER COOLING UNIT IN A HIGH SPEED OPTICAL FIBER DRAWING PROCESS (광섬유 고속인출공정용 유리섬유 냉각장치 내 공기유입에 의한 내부헬륨농도 저하현상 연구)

  • Kim, K.;Kim, D.;Kwak, H.S.;Park, S.H.;Song, S.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.92-98
    • /
    • 2010
  • In a modern high speed drawing process of optical fibers, it is necessary to use helium as a cooling gas in a glass fiber cooling unit in order to sufficiently cool down the fast moving glass fiber freshly drawn from the heated silica preform in the furnace. Since the air is entrained unavoidably when the glass fiber passes through the cooling unit, the helium is needed to be injected constantly into the cooling unit. The present numerical study investigates and analyzes the air entrainment using an axisymmetric geometry of glass fiber cooling unit. The effects of helium injection rate and direction on the air entrainment rate are discussed in terms of helium purity of cooling gas inside the cooling unit. For a given rate of helium injection, it is found that there exists a certain drawing speed that results in sudden increase in the air entrainment rate, which leads to the decreasing helium purity and therefore the cooling performance of the glass fiber cooling unit. Also, the helium injection in aiding direction is found to be more advantageous than the injection in opposing direction.

A Study of Fly Ash Resistivity Characteristics Generated from the Coal Fired Power Plant as a Function of Water Concentration and Temperature (석탄 화력발전소에서 발생되는 석탄회의 수분함유량 및 온도에 따른 비저항성 특성 연구)

  • Ku, Jae-Hyun;Lee, Jung-Eun;Lee, Jae-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.526-532
    • /
    • 2000
  • Recent studies have been directed toward obtaining a better understanding of the application of electrostatic precipitators to collect fly ash particles produced in a coal-fired power plant. Electrical resistivity can be described as the resistance of the collected dust layer to the flow of electrical current and is an important property for the collection efficiency in the electrostatic precipitator. In this paper, fly ash resistivity as a function of temperature up to $450^{\circ}C$ has been experimentally investigated using the resistivity meter consisted of the movable electrode, dust cup, and furnace. Resistivity was found to increase with increased temperature up to $200^{\circ}C$ due to the reduction of water concentration and then gradually decrease with increased temperature due to the activation of electrons. As the resistivity of fly ash in the flue gas temperature of $150^{\circ}C$ was measured >$10^{10}$ ohm cm, the efficiency of fly ash removal in the electrostatic precipitator might be expected to be low due to back-corona phenomenon. Flue gas conditioning in the electrostatic precipitator to reduce the resistivity of fly ash as required.

Fabrication of Cu-Sheathed YBCO Thick Films by Screen Printing Method Using $Y_2$BaCu$O_5$ and BaC$O_3$ Powders (Y211 및 BaCO$_3$ 분말로 Screen Printing 법을 이용한 Cu-sheath의 YBCO 후막 제조)

  • 김경진;한상철;한영희;박병삼;정년호;윤희중;오제명;최희락;성태현
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.132-135
    • /
    • 2004
  • We fabricated YBCO thick films by using a screen printing method with $Y_2$BaCuO$_{5}$(Y211) and BaCO$_3$ powders on Cu-substrate in $N_2$ atmosphere. Cu-sheathed YBCO thick film process is more simple and economic than YBCO coated conductor methods. The heat treatment is performed in the range of 860 - 875 $^{\circ}C$ for 5 min in the tube furnace of $N_2$ atmosphere. The flow rate of $N_2$ gas is fixed 60 $m\ell$/min. Microstructure and phases of thick films were investigated by optical microscope, X-ray diffraction(XRD) and SEM. At heat-treatment temperature, the thick films were partially melted by liquid reaction between CuO of oxidized copper substrate and the powders screen-printed on Cu-sheath. During the heat-treatment procedure, YBCO superconducting grains nucleate.e.

  • PDF

Study on P-type in-situ doped Polysilicon Films (P형 in-situ 도핑 폴리실리콘 막질에 관한 연구)

  • Oh, Jung-Sup;Lee, Sang-Eun;Noh, Jin-Tae;Lee, Sang-Woo;Bae, Kyoung-Sung;Roh, Yong-Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.3
    • /
    • pp.208-212
    • /
    • 2008
  • This paper reports physical properties of in situ boron doped silicon films made from boron source gas and silane ($SiH_4$) gas in a conventional low-pressure chemical vapor deposition vertical furnace. If the p-type polysilicon is formed by boron implantation into undoped polysilicon, the plasma nitridation (PN) process is added on the oxide in order to suppress boron penetration that can be caused during the thermal treatments used in fabrication. In-situ boron doped polysilicon deposition can complete p-type polysilicon film with only one deposition process and need not the PN process, because there is not interdiffusion of dopant at the intermediate temperatures of the subsequent steps. Since in-situ boron doped polysilicon films have higher work function than that of n-type polysilicon and they are compatible with the underlying oxide, they may be promising materials for improving memory cell characteristics if we make its profit of these physical properties.

Determination of Char Oxidation Rates with Different Analytical Methods (국내 수입탄 촤의 산화반응률 측정을 위한 해석기법 비교)

  • Lee, Byoung-Hwa;Song, Ju-Hun;Kang, Ki-Tae;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.876-885
    • /
    • 2009
  • Char oxidation experiments were performed with a sub-bituminous roto-middle coal in the Drop Tube Furnace (DTF) at atmospheric pressure condition. While temperatures varied between 900, 1100, 1400 $^{\circ}C$, particle size, mass, particle temperature, and CO/$CO_2$ concentration were obtained to be used for kinetic analysis of the char oxidation. This study addresses several different methods to analyze the char consumption rate, which are classified as energy balance method, ash-traced mass method, flue-gas based method, and particle size based method. The char consumption rate obtained with such methods was compared with the results of Monson et al.$^{(24)}$ While there are some differences between them because of differences in experimental apparatus and parameters to be measured, the kinetic results seems to be reasonable enough to be incorporated in a numerical modeling of coal combustion.

Characteristics of Various Ranks of Coal Gasification with $CO_2$ by Gas Analysis (가스분석을 이용한 석탄 종류별 $CO_2$ 가스화 반응특성 연구)

  • Kim, Yong-Tack;Seo, Dong-Kyun;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.2
    • /
    • pp.41-49
    • /
    • 2010
  • Various coals from many countries around the world have been used for pulverized coal boiler in power plants in Korea. In this study, the gasification reactivities of various coal chars with $CO_2$ were investigated. Carbon conversion was measured using a real time gas analyzer with NDIR CO/$CO_2$ sensor. In a lab scale furnace, each coal sample was devolatilized at $950^{\circ}C$ in nitrogen atmosphere and became coal char and then further heated up to reach to a desired temperature. Each char was then gasified with $CO_2$ under isothermal conditions. The reactivities of coal chars were investigated at different temperatures. The shrinking core model (SCM) and volume reaction model(VRM) were used to interpret the experiment data. It was found that the SCM and VRM could describe well the experimental results within the carbon conversion of 0-0.98. The gasification rates for various coals were very different. The gasification rate for any coal increased as the volatile matter content increased.

Experimental study on the melting characteristics of pellet fuel for a waste plastic firing boiler (열가소성 폐플라스틱 연소 보일러용 펠렛 연료의 용융특성 실험)

  • Lee, Sung-Soo;Kim, Hyouck-Ju;Choi, Gyu-Sung
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.189-193
    • /
    • 2006
  • Experiments were performed to investigate the melting characteristics of pellet fuel made of LDPE and PP for a waste plastic firing boiler. Pellet fuel in a burner goes through conduction, convection and radiation transferred from flame in a furnace, and complex thermo/chemical processes. To figure out effects of ambient temperature and size of pellet on melting time pellets with a diameter from 5 mm to 40 mm were made to contact high temperature flue gas generated by a LNG firing pilot burner. Though melting processes of plastics include complicated heat transfer in a burner, parameters are limited to flue gas temperature and size for the simplicity in this study. From the results, melting times of LDPE and PP with a diameter of 5mm are 63 and 62 secs respectively at 600 $^{\circ}C$ while 677 and 583 sees respectively for a diameter of 40 mm. At $900^{\circ}C$, melting times of LDPE and PP with a diameter of 5mm are 21 and 24 sees respectively while 408 and 337 secs respectively for a diameter of 40 mm. It is found that melting time of LDPE is longer than that of PP, and melting times of both in general increase with diameter of pellets. It is thought melting is dependent mostly on melting temperature of plastic. It is expected melting times obtained from the study might be taken into account in designing a pellet firing burner for a boiler

  • PDF