• Title/Summary/Keyword: Gas Flow Measurement

Search Result 447, Processing Time 0.021 seconds

Velocity Field Measurement of Flow Inside SNOUT of Zinc Plating Process ( I ) (용융아연 도금공정에서의 SNOUT 내부 유동장 해석 ( I ))

  • Shin, Dae Sig;Choi, Jayho;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1265-1273
    • /
    • 1999
  • PIV(Particle Image Velocimetry) velocity field measurements inside the snout of a1/10 scale model of the Zn plating process were carried out at the strip speed $V_s=1.5m/s$. Aluminum powder particles ($1{\mu}m$) and atomized olive oil ($3{\mu}m$) were used as seeding particles to simulate the molten Zinc flow and deoxidization gas flow, respectively. A pulsed Nd:Yag laser and a $2K{\times}2K$ high-resolution CCD camera were synchronized for the PIV velocity field measurement. From flow visualization study, it is found that the liquid flow in the Zn pot is dominantly governed by the uprising flow caused by the rotating sink roll, with its effect on the steel strip inside the snout largely diminished by installing of the snout. The deoxidization gas flow in front of the strip inside the snout can be characterized by a large-scale vortex rotating clockwise direction formed by the moving strip. In the rear side of the strip, a counter-clockwise vortex is formed and some of the flow entrained by the moving strip impinges on the free surface of molten zinc. The liquid flow in front of the strip is governed by the flow entering the snout, caused by the spinning sink roll. Just below the free surface a counter-clockwise vortex is formed near the snout wall. The moving strip affects dominantly the flow behind the strip inside the snout, and large amount of the liquid flow follows the moving strip toward the sink roll. The thickness of the flow following the strip is very thin in the front side due to the uprising flow, however thick boundary layer is formed in the rear side of the strip. Its thickness is increased as moving downstream toward the sink roll. Inside the snout, the deoxidization gas flow above the free surface is much faster than the liquid flow in the zinc pot. Due to the larger influx of the flow following the moving strip in the rear side of the strip, higher percentage of imperfection can be anticipated on the rear surface of the strip.

A study on the development of liquefied natural gas-fired combustor (액화천연가스 연소기개발에 관한 연구)

  • 최병륜;오상헌;김덕줄
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.107-118
    • /
    • 1986
  • The presenet research attempts to examine the combustion characteristics and the structure of the flame in turbulent premixed flames and thus enhance the combustion performance that leads to the design of the effective combustion system (untilizing LNG). Following experimental investigations for several stabilized premixed flames were attempted to identify the interactive mechanism between flame structures and flow fields; Visualization by Schlieren method, measurement of flow velocity by LDV, detection of ion current by ion probe, measurement of fluctuating temperature by thermocouple having compensation circuit, average values with respect to time of fluctuating amount for flow velocity, temperature, ion current, etc., variable RMS values, PDFs, autocorrelation, crosscorrelation, spatial macroscale, power spectra, and velocity scale. Continuing the authors published studies whose flame dominated by coherent structures and the characteristics of combustion reaction for irregular three dimensional flame and stabilized flame by step were investigated with obtained experimental quantities. Results of this research are following : The most turbulent flames support the structure of a Wrinkled laminar flame or laminar flamelets. It also observed that combustion reaction is related to small tubulence microscales of the turbulent flow fields closly.

  • PDF

Evaluation of Gas Transport Parameters through Dense Polymeric Membranes by Continuous-Flow Technique (연속흐름방식에 의한 기체투과특성 측정 및 분석)

  • 염충균;이정민;홍영택;김성철
    • Membrane Journal
    • /
    • v.9 no.3
    • /
    • pp.141-150
    • /
    • 1999
  • A novel permeation apparatus was developed which could make the on-line measurements of both flux transient and permeate composition in gas permeation. The measurement by using the per¬meation apparatus was based on the continuous-flow technique. The transient measurement allowed the simultaneous determinations of permeation characteristics, such as, permeability, diffusion and solubility coefficients, and activation energies only with one experiment. The apparatus performance was illustrated by conducting the permeation of pure gases through two glassy polyimides and a rubbery poly (dimethyl¬siloxane) membranes, respectively. A comparison of the permeation characteristics determined from the flux transients was made with the literature values for verifying the confidence and accuracy of the measurement. Also, the analysis of the permeation transients obtained was carried out for the close investigation of the permeation behaviors of gases through membrane.

  • PDF

A Measurement and an Analysis of Heating and DHW Energy Consumption in Apartment Buildings with individual Heating Systems (개별난방 공동주택의 난방 및 급탕 에너지사용량 계측 및 특성 분석)

  • Lee, Soo-Jin;Jin, Hye-Sun;Kim, Sung-Im;Lim, Su-hyun;Lim, Jae-Han;Song, Seung-Yeong
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.6
    • /
    • pp.15-22
    • /
    • 2018
  • The purpose of this study was to suggest specific evaluation data for heating and DHW energy consumption characteristics through analyzing energy consumption measurement data of gas boiler in Apartment Buildings with individual heating systems. To do this, it was measured both gas flow and electricity for heating and DHW respectively, and then it was analyzed not only characteristics according to energy sources; gas and electricity, but also the effect of various factors on heating and DHW energy consumption. The result of this study were as follows. It was developed the electric energy estimation model of a gas boiler through analysis on patterns by energy sources. And the effective factors for heating and DHW energy consumption were demonstrated as follows: the area for exclusive use, the number of auxiliary heating equipments, the number of occupants, and the number of sanitary fixtures.

A Study of Humidification Method in PEMFC (고분자전해질형 연료전지의 가습 방법에 대한 연구)

  • Hyun, Deok-Su;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.212-216
    • /
    • 2003
  • The humidification measurement system designed in laboratory was used to measure relative humidity and temperature of reaction gases passing through internal or external humidifier which was used in proton exchange membrane fuel cell test station. The relative humidity of gases was stabilized after $10\~20$ minutes and thus credibility of data could be assured. The effect of relative humidity on fuel cell performance could be analyzed by humidity measurement system. Extreme caution was needed to avoid humidity sensor mal-function or failure which is probable in experiment of high humidity condition near $100\%$. The amount of water carried by gas through humidifier was increased along the flow rate of gas. However, the extent of increase was lowered at high gas flow rate. These phenomena could be analyzed as residence time effect of gas in humidifier.

Sensitivity Study of the Flow-through Dynamic Flux Chamber Technique for the Soil NO Emissions

  • Kim Deug-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E3
    • /
    • pp.75-85
    • /
    • 2005
  • A mathematical sensitivity analysis of the flow-through dynamic flux chamber technique, which has been utilized usually for various trace gas flux measurement from soil and water surface, was performed in an effort to provide physical and mathematical understandings of parameters essential for the NO flux calculation. The mass balance equation including chemical reactions was analytically solved for the soil NO flux under the steady state condition. The equilibrium concentration inside the chamber, $C_{eq}$, was found to be determined mainly by the balance between the soil flux and dilution of the gas concentration inside the chamber by introducing the ambient air. Surface deposition NO occurs inside the chamber when the $C_{eq}$ is greater than the ambient NO concentration ($C_{0}$) introducing to the chamber; NO emission from the soil occurs when the $C_{eq}$ is less than the ambient NO concentration. A sensitivity analysis of the significance of the chemical reactions of NO with the reactive species (i.e. $HO_{2},/CH_{3}O_{2},/O_{3}$) on the NO flux from soils was performed. The result of the analysis suggests that the NO flux calculated in the absence of chemical reactions and wall loss could be in error ranges from 40 to $85\%$ to the total flux.

A study on the characteristics of MEM structure of $SrBi_2Ta_2O_9$ thin films by RE magnetron sputtering (RF 마그네트론 스퍼터링법에 의한 MFM 구조의 $SrBi_2Ta_2O_9$ 박막 특성에 관한 연구)

  • 이후용;최훈상;최인훈
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.136-143
    • /
    • 2000
  • $SrBi_2Ta_2O_9;(SBT)$ films were deposited on p-type Si(100) at room temperature by rf magnetron sputtering method to confirm the possibility of application of $Pt/SBT/Pt/Ti/SiO_2/Si$ structure (MFM) for destructive read out ferroelectric RAM (random access memory). Their structural characteristics with the various annealing times and Ar/$O_2$ gas flow ratios in sputtering were observed by XRD (X-ray diffractometer) and the surface morphologies were observed by FE-SEM (field emission scanning electron microscopy), and their electrical properties were observed by P-V (polarization-voltage measurement) and I-V (current-voltage measurement). The Ar/$O_2$ gas flow ratios of sputtering gas were changed from 1 : 4 to 4 : 1 and SBT thin films were deposited at room temperature. The films show (105), (110) peaks of SBT by XRD measurement. SBT thin films deposited at room temperature were crystallized by furnace annealing at 80$0^{\circ}C$ in oxygen atmosphere during either one hour or two hours. Among their electrical properties, P-V curves showed shaped hysteresis curves, but the SBT thin films showed the asymmetric ferroelectric properties in P-V curves. When Ar/$O_2$ gas flow ratios are 1 : 1, 2: 1, the leakage current density values of SBT thin films are good, those values of 3 V, 5 V, and 7 V are respectively $3.11\times10^{-8} \textrm{A/cm}^2$, $5\times10^{-8}\textrm{A/cm}^2$, $7\times10^{-8}\textrm{A/cm}^2$.After two hours of annealing time, their electrical properties and crystallization are improved.

  • PDF

Estimation of Cavity Vibration Frequency Using Adaptive Filters for Gas Flow Measurement (적응 필터를 이용한 공동진동주파수 추정에 의한 기체 유량측정)

  • 남현도
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.5
    • /
    • pp.134-140
    • /
    • 2003
  • In this paper, a hardware implementation of gas flow meter for accuracy improvement and saving repair costs at a field is investigated. An adaptive filter using LMS algorithms for estimating cavity vibration frequencies in noisy environments is also studied. The proposed cavity gas flow meter measures cavity sound signals in gas flow tube using microphone and signal processing systems estimate the cavity vibration frequency from the measured signal. The flow velocity and flow quantity can be calculated using the estimated cavity vibration frequency. Since cavity vibration frequency is corrupted by the environmental noise, an adaptive filter using NLMS algorithms is used for cancelling the environmental noise. Experiments using 1MS32OC32 digital signal processor are performed to show the effectiveness of the proposed system.

Development of Fuel Economy Measurement Technology for Fuel Cell Electric Vehicle (수소연료전지차 연비 평가기술 개발)

  • Jung, Young-Woo;Park, Jeong-Kyu;Ye, Chang-Hwan;Park, Jong-Jin;Oh, Hyung-Seuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.152-155
    • /
    • 2007
  • Fuel cell electric vehicles (FCEVs) using hydrogen gas are zero emission vehicles, thus emission measurement for combustion vehicles is not applicable. The hydrogen gas consumption for fuel economy will be measured by the stabilized pressure/temperature method, mass flow method and electrical current method, etc. In this research, weight method with a newly manufactured test equipment is applied to measure the hydrogen consumption because above 3-methods have a deviation. The hydrogen consumption is directly calculated by the weight differences of the external hydrogen tank before and after the chassis dynamometer test. Ultimately the fuel economy for FCEVs is obtained with a deviation less than 1% in all chassis dynamometer tests.

  • PDF

Analysis of Flow and Heat Transfer in Swirl Chamber for Cooling in Hot Section (고온부 냉각을 위한 스월챔버내의 유동 및 열전달 해석)

  • Lee Kang-Yeop;Kim Hyung-Mo;Han Yeoung-Min;Lee Soo-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.71-78
    • /
    • 2002
  • All modem, aerospace gas turbines must operate with hot stage gas temperature several hundreds of degrees hotter than the melting temperatures of the materials used in their construction. Complicated cooling schemes need to be employed in the combustor walls and In the high pressure turbine stages. Internal passages are cast or machined into the hot sections of aero-gas turbine engines and air from the compressor is used for cooling. In many cases, the cooling system is engineered to utilize jets of high velocity air, which impinge on the internal surfaces of the components. They are divided by Impinging cooling method and Vortex cooling method. Specially, Research of new cooling system(Vortex cooling method) that overcome inefficiency of film cooling and limitation of space. The focus of new cooling system that improve greatly cooling efficiency using quantity's cooling air which is less is set in surface heat transfer elevation. Therefore, In this study, the numerical analysis have been performed for characteristic of flow and thermal in the swirl chamber and compared with the flow field measurement by LDV. especially, for understanding of high heat transfer efficiency in vicinity of wall. we considered flow structure and mechanism of vortex and heat transfer characteristic in variation of Reynolds number.

  • PDF