DOI QR코드

DOI QR Code

A Study of Humidification Method in PEMFC

고분자전해질형 연료전지의 가습 방법에 대한 연구

  • Hyun, Deok-Su (Global & Yuasa Battery Co., Lt., Central Institute of Battery Technology) ;
  • Kim, Jun-Bom (Department of Chemical Engineering, University of Ulsan)
  • 한덕수 (세방전지㈜ 중앙기술연구소) ;
  • 김준범 (울산대학교 화학공학과)
  • Published : 2003.08.01

Abstract

The humidification measurement system designed in laboratory was used to measure relative humidity and temperature of reaction gases passing through internal or external humidifier which was used in proton exchange membrane fuel cell test station. The relative humidity of gases was stabilized after $10\~20$ minutes and thus credibility of data could be assured. The effect of relative humidity on fuel cell performance could be analyzed by humidity measurement system. Extreme caution was needed to avoid humidity sensor mal-function or failure which is probable in experiment of high humidity condition near $100\%$. The amount of water carried by gas through humidifier was increased along the flow rate of gas. However, the extent of increase was lowered at high gas flow rate. These phenomena could be analyzed as residence time effect of gas in humidifier.

고분자전해질형 연료전지에 사용되는 외부 및 내부 가습기를 통과한 반응 기체의 상대습도와 온도를 측정한 자료가 실시간으로 컴퓨터에 입력되어지는 시스템을 자체적으로 구성하였다. 이 시스템을 이용하여 측정한 경우 10-20분이 경과한 후에 습도 값이 안정되었으므로 가습 측정치에 대한 신뢰성을 향상시킬 수 있었으며, 여러 가지 가습의 영향을 해석할 수 있었다. 측정 장비의 이상을 초래할 수 있는 상대 습도가 $100\%$부근의 영역에서 지속적으로 측정을 수행할 경우 센서의 오작동 내지 고장의 원인이 될 수 있었으므로 실험시 주의가 필요하였다. 가습기를 통과한 반응기체는 유량이 증가할수록 가습되는 양은 증가하나, 일정 유량 이상이 되면 그 증가폭이 감소하는 경향을 보였는데 이는 가습기 출 통과하는 기체의 체류 시간 영향에 기인한 것으로 추정되어진다.

Keywords

References

  1. J. Power Sources v.74 Thermostable ionomeric filled membrane for H₂/O₂fuel cell B. Baradie;C. Poinsignon;J. Y. Sanchez;Y. Piffard;G. Vitter;N. Bestaoui;D. Foscallo;A. Denoyelle;D. Delabouglie;M. Vaujany https://doi.org/10.1016/S0378-7753(97)02816-4
  2. J. Phys. Chem. Determination of water diffusion coefficients in perfluorosulfonate ionomeric membrane T. A. Zawodzinski;M. Neeman;L. O. Stillernd
  3. Electrochim. Acta v.43 Complex impedance measurements on nafion M. C. Wintergill;J. J. Fontanella https://doi.org/10.1016/S0013-4686(97)10049-4
  4. J. Power Sources v.74 A study of internal humidification of an integrated PEMFC stack K. H. Choi;D. J. Park;Y. W. Rho;Y. T. Kho;T. H. Lee https://doi.org/10.1016/S0378-7753(98)00048-2
  5. U. S. Patemt 4,759,882 Gas humidification process P. L. Reid;S. C. Dluncan
  6. Electrochim. Acta v.43 Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells D. L. Wood, Ⅲ;J. S. Yi;T. V. Nguyen https://doi.org/10.1016/S0013-4686(98)00139-X
  7. U. S. Patent 5,382,478 Electrochemical fuel cell stack with humidification section located upstream from the electrochemically active section C. Y. Chow;B. W. Wozniczka
  8. Unit operations of chemical engineering, (5th ed.) W. L. McCabe;J. C. Smith;P. Harriott

Cited by

  1. Property Characterization and Analysis in Performance, Efficiency and Durability of the Membrane Electrode Assembly for Polymer Electrolyte Membrane Fuel Cell vol.18, pp.6, 2011, https://doi.org/10.4150/KPMI.2011.18.6.473