• 제목/요약/키워드: Gas Detection Sensor

검색결과 326건 처리시간 0.022초

LSTM-based Early Fire Detection System using Small Amount Data

  • Seonhwa Kim;Kwangjae Lee
    • 반도체디스플레이기술학회지
    • /
    • 제23권1호
    • /
    • pp.110-116
    • /
    • 2024
  • Despite the continuous advancement of science and technology, fire accidents continue to occur without decreasing over time, so there is a constant need for a system that can accurately detect fires at an early stage. However, because most existing fire detection systems detect fire in the early stage of combustion when smoke is generated, rapid fire prevention actions may be delayed. Therefore we propose an early fire detection system that can perform early fire detection at a reasonable cost using LSTM, a deep learning model based on multi-gas sensors with high selectivity in the early stage of decomposition rather than the smoke generation stage. This system combines multiple gas sensors to achieve faster detection speeds than traditional sensors. In addition, through window sliding techniques and model light-weighting, the false alarm rate is low while maintaining the same high accuracy as existing deep learning. This shows that the proposed fire early detection system is a meaningful research in the disaster and engineering fields.

  • PDF

광학입자센서 내 유동장과 측정영역이 측정효율에 미치는 영향 (Effect of Flow Field and Detection Volume in the Optical Particle Sensor on the Detection Efficiency)

  • 김영길;전기수;김태성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3162-3167
    • /
    • 2007
  • The OPS (Optical Particle Sensor) using light scattering from the particles (real-time measurement without physical contact to the particles) can be used for cleanroom or atmospheric environment monitoring. For particles smaller than 300 nm, the detection efficiency becomes lower as scattered light decreases with particle size. To obtain higher detection efficiency with small particles, the flow field in particle chamber and the detection volume should be designed optimally to achieve maximum scattered light from the particles. In this study, a commercial computational fluid dynamics software FLUENT was used to simulate the gas flow field and particle trajectories with various optical chamber designs for 300 nm PSL particle. For estimation of laser viewing volume, we used a commercial computational optical design program ZEMAX. The results will be a great help in the development of OPS which can measure small particles with higher detection efficiency.

  • PDF

Effect of Noble Metals on Hydrogen Sensing Properties of Metal Oxide-based Gas Sensors

  • Mirzaei, Ali;Bang, Jae Hoon;Kim, Sang Sub;Kim, Hyoun Woo
    • 센서학회지
    • /
    • 제29권6호
    • /
    • pp.365-368
    • /
    • 2020
  • As a green and abundant source of energy, H2 has attracted the attention of researchers for use in different applications. Nevertheless, it is highly flammable, and because of its significantly small size, extreme attention is needed to detect its leakage. In this review, we discuss different effects of noble metals on the H2 gas response and performance of metal oxide-based gas sensors. In this regard, we discuss the effects of noble metals, in combination with metal oxides, on H2 gas detection. The catalytic activity towards H2 gas and the formation of heterojunctions with metal oxides are the main contributions of noble metals to the sensing improvement of H2 gas sensors. Furthermore, in the special case of Pd and somewhat Pt, the formation of PdHx and PtHx also affects the H2 sensing performance. This review paper provides useful information for researchers working in the field of H2 gas detection.

Development of a MEMS-based H2S Sensor with a High Detection Performance and Fast Response Time

  • Dong Geon Jung;Junyeop Lee;Dong Hyuk Jung;Won Oh Lee;Byeong Seo Park;Daewoong Jung
    • 센서학회지
    • /
    • 제32권4호
    • /
    • pp.207-212
    • /
    • 2023
  • H2S is a toxic and harmful gas, even at concentrations as low as hundreds of parts per million; thus, developing an H2S sensor with excellent performance in terms of high response, good selectivity, and fast response time is important. In this study, an H2S sensor with a high response and fast response time, consisting of a sensing material (SnO2), an electrode, a temperature sensor, and a micro-heater, was developed using micro-electro-mechanical system technology. The developed H2S sensor with a micro-heater (circular type) has excellent H2S detection performance at low H2S concentrations (0-10 ppm), with quick response time (<16 s) and recovery time (<65 s). Therefore, we expect that the developed H2S sensor will be considered a promising candidate for protecting workers and the general population and for responding to tightened regulations.

3D 프린팅을 이용한 Pt/Carbon Nanotube composite 기반 전기화학식 황화수소 가스 센서 제작 (Fabrication of Pt/Carbon Nanotube Composite Based Electrochemical Hydrogen Sulfide Gas Sensor using 3D Printing)

  • 하윤태;권진범;최수지;정대웅
    • 센서학회지
    • /
    • 제32권5호
    • /
    • pp.290-294
    • /
    • 2023
  • Among various types of harmful gases, hydrogen sulfide is a strong toxic gas that is mainly generated during spillage and wastewater treatment at industrial sites. Hydrogen sulfide can irritate the conjunctiva even at low concentrations of less than 10 ppm, cause coughing, paralysis of smell and respiratory failure at a concentration of 100 ppm, and coma and permanent brain loss at concentrations above 1000 ppm. Therefore, rapid detection of hydrogen sulfide among harmful gases is extremely important for our safety, health, and comfortable living environment. Most hydrogen sulfide gas sensors that have been reported are electrical resistive metal oxide-based semiconductor gas sensors that are easy to manufacture and mass-produce and have the advantage of high sensitivity; however, they have low gas selectivity. In contrast, the electrochemical sensor measures the concentration of hydrogen sulfide using an electrochemical reaction between hydrogen sulfide, an electrode, and an electrolyte. Electrochemical sensors have various advantages, including sensitivity, selectivity, fast response time, and the ability to measure room temperature. However, most electrochemical hydrogen sulfide gas sensors depend on imports. Although domestic technologies and products exist, more research is required on their long-term stability and reliability. Therefore, this study includes the processes from electrode material synthesis to sensor fabrication and characteristic evaluation, and introduces the sensor structure design and material selection to improve the sensitivity and selectivity of the sensor. A sensor case was fabricated using a 3D printer, and an Ag reference electrode, and a Pt counter electrode were deposited and applied to a Polytetrafluoroethylene (PTFE) filter using PVD. The working electrode was also deposited on a PTFE filter using vacuum filtration, and an electrochemical hydrogen sulfide gas sensor capable of measuring concentrations as low as 0.6 ppm was developed.

초음파 센서의 1차 정합층 두께에 따른 가스탱크 미세누설 수신특성 (Gas Tank Microleakage Reception Characteristics According to Thickness of the First Matching Layer of Ultrasonic Sensor)

  • 서원준;손성진;임석연
    • Tribology and Lubricants
    • /
    • 제37권5호
    • /
    • pp.164-171
    • /
    • 2021
  • Ultrasonic sensors show various reception characteristics based on the density of the measurement medium; hence, they are used in various fields to benefit from the characteristics of ultrasonic signals. In this study, the reception characteristics according to the thickness of the first matching layer are compared and analyzed for application to gas tank microleak detection. Accordingly, three types of sensors are manufactured with varying thicknesses of the first matching layer, namely 4.8 mm, 5.1 mm, and 5.5 mm; further, a direct measurement method is used wherein the sensor is attached to the inside of the chamber. Experiments are conducted to observe the phase change due to microleakage, which is the most linear in the sensor with the 4.8 mm thick first matching layer. This is assumed to be the result of stable signal transmission and reception with little phase deviations over time because the first matching layer is closest to the ultrasonic wavelength. The other sensors show nonlinear results with increasing thickness of the first matching layer. Through this study, it is found that appropriately selecting the thickness of the first matching layer of the ultrasonic sensor can greatly influence sensor reliability.

Feasibility study of a resistive-type sodium aerosol detector with ZnO nanowires for sodium-cooled fast reactors

  • Jewhan Lee;Da-Young Gam;Ki Ean Nam;Seong J. Cho;Hyungmo Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2373-2379
    • /
    • 2023
  • In sodium systems, leakage is one of the safety concerns; it can cause chemical reactions, which may result in fires. There are contact and non-contact types of leak detectors, and the conventional method of non-contact type detection is by gas sampling. Because of the complexity of this method, there has always been a need for a simple gas sensor, and the resistive-type nanostructure ZnO sensor is a promising option with various advantages. In this study, a ZnO sensor was fabricated, and the concept was tested as a leak detector using a dedicated experiment facility. The experiment results showed distinctive changes in resistance with the presence of sodium aerosol under various conditions. Replacing the conventional gas sampling with the ZnO sensors is expected to enable identification of the leakage location if used as a point-wise instrumentation and to greatly reduce the total cost, making the system simple, light, and effective. For further study, more tests will be performed to evaluate the sensitivity of key parameters under various conditions.

변압기 절연유중 가스 검출장치의 가스 감지 특성 (Gas detection charracteristic of Transformer Oil Gas Detector)

  • 황규현;서호준;이석우;이동희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.323-324
    • /
    • 2005
  • To found out the degradation characteristic of transformer insulation, insulation materials and electrodes are deposited into transformer oil. They used to heated and make flashover. Due to the thermal and electrical stress added to insulation materials, the density of carbon dioxide and hydrogen included in transformer oil was increased. The gas density can measured by using the gas density detection equipment of gas sensor and air circulation method.

  • PDF

Sol-Gel 방법으로 제작된 SnO2 seed layer를 적용한 고반응성 ZnO 가스 센서 (High-sensitivity ZnO gas Sensor with a Sol-gel-processed SnO2 Seed Layer)

  • 김상우;박소영;한태희;이세형;한예지;이문석
    • 센서학회지
    • /
    • 제29권6호
    • /
    • pp.420-426
    • /
    • 2020
  • A metal oxide semiconductor gas sensor is operated by measuring the changes in resistance that occur on the surface of nanostructures for gas detection. ZnO, which is an n-type metal oxide semiconductor, is widely used as a gas sensor material owing to its high sensitivity. Various ZnO nanostructures in gas sensors have been studied with the aim of improving surface reactions. In the present study, the sol-gel and vapor phase growth techniques were used to fabricate nanostructures to improve the sensitivity, response, and recovery rate for gas sensing. The sol-gel method was used to synthesize SnO2 nanoparticles, which were used as the seed layer. The nanoparticles size was controlled by regulating the process parameters of the solution, such as the pH of the solution, the type and amount of solvent. As a result, the SnO2 seed layer suppressed the aggregation of the nanostructures, thereby interrupting gas diffusion. The ZnO nanostructures with a sol-gel processed SnO2 seed layer had larger specific surface area and high sensitivity. The gas response and recovery rate were 1-7 min faster than the gas sensor without the sol-gel process. The gas response increased 4-24 times compared to that of the gas sensor without the sol-gel method.

실시간 위험환경 관리를 위한 센서 모듈시스템 연구 (A Study on the Sensor Module System for Real-Time Risk Environment Management)

  • 조영창;권기진;정종혁;김민수
    • 전기전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.953-958
    • /
    • 2018
  • 본 연구에서는 산업현장, 지하시설물의 밀폐공간에서 유해가스 및 생체신호를 동시에 검출이 가능한 휴대형 검출시스템을 개발하였다. 개발된 시스템은 가스검출용 센서모듈, 패치형 1채널 소형 ECG 센서, 3축가속도 검출센서용 모듈 및 통계분석용 시스템이다. 시스템모듈의 성능을 검증하기 위해 디지털해상도, 생체신호증폭도, 출력전압 및 초소형모듈의 크기로 평가하였다. 개발된 시스템의 성능결과 디지털해상도는 300(rps), 신호증폭이득은 500dB이상 성능을 가졌고, 심전도 모듈은 $50mm{\times}10mm{\times}10mm$로 제작되어 패치형으로 활용도를 높일 수 있다. 본 연구의 휴대용 가스검출기 및 패치용 심전도, 가속도검출기는 산업현장작업자의 실시간 감시용 IoT 기반 관리시스템으로 활용한다면 가치가 높을 것으로 생각된다.