DOI QR코드

DOI QR Code

Effect of Noble Metals on Hydrogen Sensing Properties of Metal Oxide-based Gas Sensors

  • Mirzaei, Ali (Research Institute of Industrial Science, Hanyang University) ;
  • Bang, Jae Hoon (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Sang Sub (Department of Materials Science and Engineering, Inha University) ;
  • Kim, Hyoun Woo (Research Institute of Industrial Science, Hanyang University)
  • Received : 2020.10.16
  • Accepted : 2020.11.24
  • Published : 2020.11.30

Abstract

As a green and abundant source of energy, H2 has attracted the attention of researchers for use in different applications. Nevertheless, it is highly flammable, and because of its significantly small size, extreme attention is needed to detect its leakage. In this review, we discuss different effects of noble metals on the H2 gas response and performance of metal oxide-based gas sensors. In this regard, we discuss the effects of noble metals, in combination with metal oxides, on H2 gas detection. The catalytic activity towards H2 gas and the formation of heterojunctions with metal oxides are the main contributions of noble metals to the sensing improvement of H2 gas sensors. Furthermore, in the special case of Pd and somewhat Pt, the formation of PdHx and PtHx also affects the H2 sensing performance. This review paper provides useful information for researchers working in the field of H2 gas detection.

Keywords

References

  1. M. Momirlan and T. N. Veziroglu, "The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet", Int. J. Hydrog. Energy, Vol. 30, No. 7, pp. 795-802, 2005. https://doi.org/10.1016/j.ijhydene.2004.10.011
  2. F. Dawood, M. Anda, and G. Shafiullah, "Hydrogen production for energy: An overview", Int. J. Hydrog. Energy, Vol. 45, No. 7, pp. 3847-3869, 2020. https://doi.org/10.1016/j.ijhydene.2019.12.059
  3. Z. Zhu, M. Wang, Y. Meng, Z. Lin, Y. Cui, and W. Chen, "A High-Rate Lithium Manganese Oxide-Hydrogen Battery", Nano Lett., Vol. 20, No. 5, pp. 3278-3283, 2020. https://doi.org/10.1021/acs.nanolett.0c00044
  4. P. Ahmadi, S. H. Torabi, H. Afsaneh, Y. Sadegheih, H. Ganjehsarabi, and M. Ashjaee, "The effects of driving patterns and PEM fuel cell degradation on the lifecycle assessment of hydrogen fuel cell vehicles", Int. J. Hydrog. Energy, Vol. 45, No. 5, pp. 3595-3608, 2020. https://doi.org/10.1016/j.ijhydene.2019.01.165
  5. A. M. Abdalla, S. Hossain, O. B. Nisfindy, A. T. Azad, M. Dawood, and A. K. Azad, "Hydrogen production, storage, transportation and key challenges with applications: A review", Energy Conv. Manag., Vol. 165, pp. 602-627, 2018. https://doi.org/10.1016/j.enconman.2018.03.088
  6. W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, "An overview of hydrogen safety sensors and requirements", Int. J. Hydrog. Energy, Vol. 36, No. 3, pp. 2462-2470, 2011. https://doi.org/10.1016/j.ijhydene.2010.04.176
  7. A. Umar, H. Ammar, R. Kumar, T. Almas, A. A. Ibrahim, M. AlAssiri, M. Abaker, and S. Baskoutas, "Efficient H2 gas sensor based on 2D SnO2 disks: experimental and theoretical studies", Int. J. Hydrog. Energy, Vol. 45, No. 50, pp. 26388-26401, 2020. https://doi.org/10.1016/j.ijhydene.2019.04.269
  8. K. Mazloomi and C. Gomes, "Hydrogen as an energy carrier: prospects and challenges", Renew. Sustain. Energy Rev., Vol. 16, No. 5, pp. 3024-3033, 2012. https://doi.org/10.1016/j.rser.2012.02.028
  9. B. Jang, W. Kim, M.-J. Song, and W. Lee, "Thermal stability of the sensing properties in H2 sensors composed of Pd nanogaps on an elastomeric substrate", Sens. Actuator B, Vol. 240, pp. 186-192, 2017. https://doi.org/10.1016/j.snb.2016.08.140
  10. G. Korotcenkov, S. D. Han, and J. R. Stetter, "Review of electrochemical hydrogen sensors", Chem. Rev., Vol. 109, No. 3, pp. 1402-1433, 2009. https://doi.org/10.1021/cr800339k
  11. A. S. Pranti, D. Loof, S. Kunz, V. Zielasek, M. Baumer, and W. Lang, "Characterization of a highly sensitive and selective hydrogen gas sensor employing Pt nanoparticle network catalysts based on different bifunctional ligands", Sens. Actuator B, Vol. 322, pp. 128619(1)-128619(11), 2020.
  12. M. Matsumiya, F. Qiu, W. Shin, N. Izu, N. Murayama, and S. Kanzaki, "Thin-film Li-doped NiO for thermoelectric hydrogen gas sensor", Thin Solid Films, Vol. 419, No. 1-2, pp. 213-217, 2002. https://doi.org/10.1016/S0040-6090(02)00762-9
  13. S. S. Kalanur, Y.-A. Lee, and H. Seo, "Eye-readable gasochromic and optical hydrogen gas sensor based on CuS-Pd", RSC Adv., Vol. 5, No. 12, pp. 9028-9034, 2015. https://doi.org/10.1039/C4RA11067F
  14. N. Matsuyama, S. Okazaki, H. Nakagawa, H. Sone, and K. Fukuda, "Response kinetics of a fiber-optic gas sensor using Pt/WO3 thin film to hydrogen", Thin Solid Films, Vol. 517, No. 16, pp. 4650-4653, 2009. https://doi.org/10.1016/j.tsf.2009.01.126
  15. F. T. Foroushani, H. Tavanai, M. Ranjbar, and H. Bahrami, "Fabrication of tungsten oxide nanofibers via electrospinning for gasochromic hydrogen detection", Sens. Actuator B, Vol. 268, pp. 319-327, 2018. https://doi.org/10.1016/j.snb.2018.04.120
  16. Y. K. Kim, S.-H. Hwang, S. M. Jeong, K. Y. Son, and S. K. Lim, "Colorimetric hydrogen gas sensor based on PdO/metal oxides hybrid nanoparticles", Talanta, Vol. 188, pp. 356-364, 2018. https://doi.org/10.1016/j.talanta.2018.06.010
  17. K. Hassan, A. I. Uddin, and G. -S. Chung, "Fast-response hydrogen sensors based on discrete Pt/Pd bimetallic ultrathin films", Sens. Actuator B, Vol. 234, pp. 435-445, 2016. https://doi.org/10.1016/j.snb.2016.05.013
  18. U. T. Nakate, R. Ahmad, P. Patil, Y. Yu, and Y.-B. Hahn, "Ultra thin NiO nanosheets for high performance hydrogen gas sensor device", Appl. Surf. Sci., Vol. 506, pp. 144971, 2020. https://doi.org/10.1016/j.apsusc.2019.144971
  19. A. Dey, "Semiconductor metal oxide gas sensors: A review", Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., Vol. 229, pp. 206-217, 2018. https://doi.org/10.1016/j.mseb.2017.12.036
  20. P. T. Moseley, "Progress in the development of semiconducting metal oxide gas sensors: a review", Sci. Technol., Vol. 28, No. 8, pp. 082001(1)- 082001(15), 2017.
  21. X.-T. Yin, J. Li, D. Dastan, W.-D. Zhou, H. Garmestani, and F. M. Alamgir, "Ultra-high selectivity of H2 over CO with a pn nanojunction based gas sensors and its mechanism", Sens. Actuator B, Vol. 319, pp. 128330(1)- 128330(9), 2020.
  22. Y. K. Moon, S.-Y. Jeong, Y. C. Kang, and J.-H. Lee, "Metal oxide gas sensors with Au nanocluster catalytic overlayer:toward tuning gas selectivity and response using a novel bilayer sensor design", ACS Appl. Mater. Interfaces, Vol. 11, No. 35, pp. 32169-32177, 2019. https://doi.org/10.1021/acsami.9b11079
  23. J.-H. Lee, J.-Y. Kim, J.-H. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, "Pd-decorated Si nano-horns as sensitive and selective hydrogen gas sensors", Mater. Res. Bull., Vol. 132, pp. 110985(1)- 110985(7), 2020. https://doi.org/10.1016/j.materresbull.2020.110985
  24. J.-H. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, "Low power-consumption CO gas sensors based on Au-functionalized SnO2-ZnO core-shell nanowires", Sens. Actuator B, Vol. 267, pp. 597-607, 2018. https://doi.org/10.1016/j.snb.2018.04.079
  25. A. Kaniyoor, R. I. Jafri, T. Arockiadoss, and S. Ramaprabhu, "Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor", Nanoscale, Vol. 1, No. 3, pp. 382-386, 2009. https://doi.org/10.1039/b9nr00015a
  26. M. Matsumiya, W. Shin, N. Izu, and N. Murayama, "Nanostructured thin-film Pt catalyst for thermoelectric hydrogen gas sensor", Sens. Actuator B, Vol. 93, No. 1, pp. 309-315, 2003. https://doi.org/10.1016/S0925-4005(03)00223-5
  27. A. Esfandiar, S. Ghasemi, A. Irajizad, O. Akhavan, and M. Gholami, "The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing", Int. J. Hydrog. Energy, Vol. 37, No. 20, pp. 15423-15432, 2012. https://doi.org/10.1016/j.ijhydene.2012.08.011
  28. N. Yamazoe, "New approaches for improving semiconductor gas sensors", Sens. Actuator B, Vol. 5, No. 1, pp. 7-19, 1991. https://doi.org/10.1016/0925-4005(91)80213-4
  29. S. Dhall, K. Sood, and R. Nathawat, "Room temperature hydrogen gas sensors of functionalized carbon nanotubes based hybrid nanostructure: role of Pt sputtered nanoparticles", Int. J. Hydrog. Energy, Vol. 42, No. 12, pp. 8392-8398, 2017. https://doi.org/10.1016/j.ijhydene.2017.02.005
  30. R. Prins, "Hydrogen spillover. Facts and fiction", Chem. Rev., Vol. 112, No. 5, pp. 2714-2738, 2012. https://doi.org/10.1021/cr200346z
  31. Z. Li, Z. Yao, A. A. Haidry, T. Plecenik, L. Xie, L. Sun, and Q. Fatima, "Resistive-type hydrogen gas sensor based on TiO2: A review", Int. J. Hydrog. Energy, Vol. 43, No. 45, pp. 21114-21132, 2018. https://doi.org/10.1016/j.ijhydene.2018.09.051
  32. M. S. Barbosa, P. H. Suman, J. J. Kim, H. L. Tuller, J. A. Varela, and M. O. Orlandi, "Gas sensor properties of Agand Pd-decorated SnO micro-disks to NO2, H22 and CO: catalyst enhanced sensor response and selectivity", Sens. Actuator B, Vol. 239, No. 45, pp. 253-261, 2017. https://doi.org/10.1016/j.snb.2016.07.157
  33. L. Wang and R. T. Yang, "New sorbents for hydrogen storage by hydrogen spillover-a review", Energy Environ. Sci., Vol. 1, No. 2, pp. 268-279, 2008. https://doi.org/10.1039/b807957a
  34. L. F. Zhu, J. C. She, J. Y. Luo, S. Z. Deng, J. Chen, X. W. Ji, and N. S. Xu, "Self-heated hydrogen gas sensors based on Pt-coated W18O49 nanowire networks with high sensitivity, good selectivity and low power consumption", Sens. Actuator B, Vol. 153, No. 2, pp. 354-360, 2011. https://doi.org/10.1016/j.snb.2010.10.047
  35. C. -H. Han, D.-W. Hong, I.-J. Kim, J. Gwak, S.-D. Han, and K. C. Singh, "Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor", Sens. Actuator B, Vol. 128, No. 1, pp. 320-325, 2007. https://doi.org/10.1016/j.snb.2007.06.025
  36. K. Hassan, A. I. Uddin, and G.-S. Chung, "Mesh of ultrasmall Pd/Mg bimetallic nanowires as fast response wearable hydrogen sensors formed on filtration membrane", Sens. Actuator B, Vol. 252, No. 1, pp. 1035-1044, 2017. https://doi.org/10.1016/j.snb.2017.06.109
  37. A. Gurlo and D. R. Clarke, "High-sensitivity hydrogen detection: Hydrogen-induced swelling of multiple cracked palladium films on compliant substrates", Angew. Chem. Int. Ed., Vol. 50, No. 43, pp. 10130-10132, 2011. https://doi.org/10.1002/anie.201103845
  38. A. Mirzaei, H. R. Yousefi, F. Falsafi, M. Bonyani, J.-H. Lee, J.-H. Kim, H. W. Kim, and S. S. Kim, "An overview on how Pd on resistive-based nanomaterial gas sensors can enhance response toward hydrogen gas", Int. J. Hydrog. Energy, Vol. 44, No. 36, pp. 20552-20571, 2019. https://doi.org/10.1016/j.ijhydene.2019.05.180
  39. Y.-N. Zhang, H. Peng, X. Qian, Y. Zhang, G. An, and Y. Zhao, "Recent advancements in optical fiber hydrogen sensors", Sens. Actuator B, Vol. 244, No. 36, pp. 393-416, 2017. https://doi.org/10.1016/j.snb.2017.01.004
  40. J.-H. Lee, J.-H. Kim, J.-Y. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, "Ppb-Level selective hydrogen gas detection of Pd-functionalized In2O3-loaded ZnO nanofiber gas sensors", Sensors, Vol. 19, No. 19, pp. 4276(1)-4276(12), 2019.
  41. Q. Liu, J. Yao, Y. Wu, Y. Wang, and G. Ding, "Two operating modes of palladium film hydrogen sensor based on suspended micro hotplate", Int. J. Hydrog. Energy, Vol. 44, No. 21, pp. 11259-11265, 2019. https://doi.org/10.1016/j.ijhydene.2019.02.228
  42. H.-J. Noh, H.-J. Kim, Y. M. Park, J.-S. Park, and H.-N. Lee, "Complex behavior of hydrogen sensor using nanoporous palladium film prepared by evaporation", Appl. Surf. Sci., Vol. 480, No. 21, pp. 52-56, 2019. https://doi.org/10.1016/j.apsusc.2019.02.088
  43. N. X. Thai, N. Van Duy, N. Van Toan, C. M. Hung, N. Van Hieu, and N. D. Hoa, "Effective monitoring and classification of hydrogen and ammonia gases with a bilayer Pt/SnO2 thin film sensor", Int. J. Hydrog. Energy, Vol. 45, No. 3, pp. 2418-2428, 2020. https://doi.org/10.1016/j.ijhydene.2019.11.072