• 제목/요약/키워드: Gas Damping

Search Result 137, Processing Time 0.033 seconds

Rotordynamic Performance Measurements of An Oil-Free Turbocharger Supported on Gas Foil Bearings and Their Comparisons to Floating Ring Bearings

  • Lee, Yong-Bok;Park, Dong-Jin;Sim, Kyuho
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.1
    • /
    • pp.23-35
    • /
    • 2015
  • This paper presents the rotordynamic performance measurement of oil-free turbocharger (TC) supported on gas foil bearings (GFBs) for 2 liter class diesel vehicles and comparison to floating ring bearings (FRBs). Oil-free TC was designed and developed via the rotordynamic analyses using dynamic force coefficients from GFB analyses. The rotordynamics and performance of the oil-free TC was measured up to 85 krpm while being driven by a diesel vehicle engine, and compared to a commercial oil-lubricated TC supported on FRBs. The test results showed that the GFBs increased the rotor speed by ~ 20% at engine speeds of 1,500 rpm and 1,750 rpm, yielding the reduction of turbine input energy by more than 400 W. Incidentally, an external shock test on the oil-free TC casing was conducted at the rotor speed of 60 krpm, and showed a good capability of vibration damping due to the well-known dry friction mechanism of the GFBs.

Floating Gas Power Plants

  • Kim, Hyun-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_1
    • /
    • pp.907-915
    • /
    • 2020
  • Specification selection, Layout, specifications and combinations of Power Drives, and Ship motions were studied for FGPP(Floating Gas-fired Power Plants), which are still needed in areas such as the Caribbean, Latin America, and Southeast Asia where electricity is not sufficiently supplied. From this study, the optimal equipment layout in ships was derived. In addition, the difference between engine and turbine was verified through LCOE(Levelized Cost of Energy) comparison according to the type and combination of Power Drives. Analysis of Hs(Significant Height of wave) and Tp(spectrum Peak Period of wave) for places where this FGPP will be tested or applied enables design according to wave characteristics in Brazil and Indonesia. Normalized Sloshing Pressures of FGPP and LNG Carrier are verified using a sloshing analysis program, which is CFD(Computational Fluid Dynamics) software developed by ABS(American Bureau of Shipping). Power Transmission System is studied with Double bus with one Circuit Breaker Topology. A nd the CFD analysis allowed us to calculate linear roll damping coefficients for more accurate full load conditions and ballast conditions. Through RAO(Response Amplitude Operator) analysis, we secured data that could minimize the movement of ships according to the direction of waves and ship placement by identifying the characteristics of large movements in the beam sea conditions. The FGPP has been granted an AIP(Approval in Principle) from a classification society, the ABS.

Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load

  • Keshtegar, Behrooz;Tabatabaei, Javad;Kolahchi, Reza;Trung, Nguyen-Thoi
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.327-335
    • /
    • 2020
  • Concrete pipes are considered important structures playing integral role in spread of cities besides transportation of gas as well as oil for far distances. Further, concrete structures under seismic load, show behaviors which require to be investigated and improved. Therefore, present research concerns dynamic stress and strain alongside deflection assessment of a concrete pipe carrying water-based nanofluid subjected to seismic loads. This pipe placed in soil is modeled through spring as well as damper. Navier-Stokes equation is utilized in order to gain force created via fluid and, moreover, mixture rule is applied to regard the influences related to nanoparticles. So as to model the structure mathematically, higher order refined shear deformation theory is exercised and with respect to energy method, the motion equations are obtained eventually. The obtained motion equations will be solved with Galerkin and Newmark procedures and consequently, the concrete pipe's dynamic stress, strain as well as deflection can be evaluated. Further, various parameters containing volume percent of nanoparticles, internal fluid, soil foundation, damping and length to diameter proportion of the pipe and their influences upon dynamic stress and strain besides displacement will be analyzed. According to conclusions, increase in volume percent of nanoparticles leads to decrease in dynamic stress, strain as well as displacement of structure.

An Experimental Study on the Combustion Instability Evaluation by Using DMD (DMD 기법을 적용한 모형 가스터빈의 연소불안정성 평가에 관한 실험적 연구)

  • Son, Jinwoo;Sohn, Chae Hoon;Yoon, Jisu;Yoon, Youngbin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.59-60
    • /
    • 2017
  • Combustion instability of gas turbine is performed by adopting dynamic mode decomposition (DMD). The unstable frequencies are calculated and compared with FFT results. The damping coefficient derived from the DMD technique and FFT results were compared and analyzed. OH radical is measured by experimental work and fluctuation field is extracted and FTF was calculated at various points with DMD. The gains of FTF are changed depending on the extraction position of the heat release fluctuation field.

  • PDF

A Development of A Gas Mechanical Pulsator (압력 섭동 장치 설계/제작 및 검증시험)

  • Kim, Tae-Woan;Hwang, Oh-Sik;Ko, Young-Sung;Jung, Se-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.50-57
    • /
    • 2009
  • A gas mechanical pulsator is developed for the study of combustion instabilities in various combustors such as LRE combustor. First, it shows that the mass flow rates and the perturbation frequencies can be successively controlled by the inlet pressure and the rotating speed of a rotating disk with many holes. Second, the device is used as an acoustic amplification source as a substitute for the speaker in the previous acoustic tests and its results show almost the same resonant frequency and damping characteristics compared with the previous results. In conclusion, the result shows that it can be used as a substitute for a speaker in the studies of LRE combustion instabilities, which has a flow and no limitation of amplification, and a device for making a perturbation source in gas flow.

Performance Predictions of Gas Foil Bearing with Leaf Foils Supported on Bumps (범프로 지지되는 다엽 포일을 갖는 가스 포일 베어링의 성능 해석)

  • Kim, T.H.;Mun, H.W.
    • Tribology and Lubricants
    • /
    • v.34 no.3
    • /
    • pp.75-83
    • /
    • 2018
  • Microturbomachinery (< 250 kW) using gas foil bearings can function without oil lubricants, simplify rotor-bearing systems, and demonstrate excellent rotordynamic stability at high speeds. State-of-the-art technologies generally use bump foil bearings or leaf foil bearings due to the specific advantages of each of the two types. Although these two types of bearings have been studied extensively, there are very few studies on leaf-bump foil bearings, which are a combination of the two aforementioned bearings. In this work, we illustrate a simple mathematical model of the leaf-bump foil bearing with leaf foils supported on bumps, and predict its static and dynamic performances. The analysis uses the simple elastic model for bumps that was previously developed and verified using experimental data, adds a leaf foil model, and solves the Reynolds equation for isothermal, isoviscous, and ideal gas fluid flow. The model predicts that the drag torques of the leaf-bump foil bearings are not affected significantly by static load and bearing clearance. Due to the preload effect of the leaf foils, rotor spinning, even under null static load, generates significant hydrodynamic pressure with its peak near the trailing edge of each leaf foil. A parametric study reveals that, while the journal eccentricity and minimum film thickness decrease, the drag torque, direct stiffness, and direct damping increase with increasing bump stiffness. The journal attitude angle and cross-coupled stiffness remain nearly constant with increasing bump stiffness. Interestingly, they are significantly smaller compared to the corresponding values obtained for bump foil bearings, thus, implying favorable rotor stability performance.

Development of an Analysis Model for UPS System of LNG Receiving Terminal Facilities (천연가스 생산기지 내 UPS시스템의 해석모델 개발)

  • Kook, Seung-Kyu;Hong, Seong-Kyeong;Kim, Joon-Ho;Choi, Won-Mog;Park, Young-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.539-545
    • /
    • 2016
  • UPS system in the liquefied natural gas(LNG) receiving terminal is one of the fundamental equipment that need to sustain operation during earthquake. In this study, modal identification test of UPS system was performed based on IEEE Std. 693-2005 and natural frequencies and modal damping, mode shapes had been identified. In addition, tri-axial time history test was performed to check the behavior and stress of the equipment during earthquake. Eigenvalue analysis was performed and analysis model was modified by reflecting the results of the test. Static analysis by dead weight and response spectrum analysis were performed to compare the combined stresses with the stress results of test. Dynamic characteristics and combined stresses under seismic load condition of the improved analysis model were similar to the test results and in this regard the compatibility was proved.

Structural Optimization of Cantilever Beam in Conjunction with Dynamic Analysis

  • Zai, Behzad Ahmed;Ahmad, Furqan;Lee, Chang-Yeol;Kim, Tae-Ok;Park, Myung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.31-36
    • /
    • 2011
  • In this paper, an analytical model of a cantilever beam having a midpoint load is considered for structural optimization and design. This involves creation of the geometry through a parametric study of all design variables. For this purpose, the optimization of the cantilever beam was elaborated in order to find the optimum geometry which minimizes its volume eventually for minimum weight by FEM (finite element method) analysis. Such geometry can be obtained by different combinations of width and height, so that the beam may have the same cross-sectional area, yet different dynamic behavior. So for optimum safe design, besides minimum volume it should have minimum vibration as well. In order to predict vibration, different dynamic analyses were performed simultaneously to identify the resonant frequencies and mode shapes belonging to the lowest three modes of vibration. Next, by introducing damping effects, the tip displacement and bending stress at the fixed end was evaluated under dynamic loads of varying frequency. Investigation of the results clearly shows that only structural analysis is not enough to predict the optimum values of dimension for safe design it must be aided by dynamic analysis as well.

A Study on the Noise and Vibration Path of Hermetic Rotary Compressor by SEA (통계적 에너지 해석 기법에 의한 밀폐형 회전 압축기의 소음진동 전달경로 해석)

  • Hwang, Seon-Woong;Ahn, Byung-Ha;Jeong, Hyeon-Chul;Jeong, Weui-Bong;Kim, Kyu-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.869-874
    • /
    • 2002
  • Hermetic rotary compressor is one of the most important components for air conditioning system since it has a great effect on both the performance and the noise and vibration of the system. Noise and vibration of rotary compressor is occurred due to gas pulsation during compression process and unbalanced dynamic force. In order to reduce noise and vibration, It is necessary to identify sources of noise and vibration and effectively control them. Many approaches have been tried to identify noise sources of compressor. However, compressor noise source identification has proven to be difficult since the characteristics of compressor noise are complicated due to the interaction of the compressor parts and gas pulsation. In this work, Statistical Energy Analysis has been used to trace the energy flow in the compressor and identify transmission paths from the noise source to the sound field.

  • PDF

Numerical Study of Acoustic Coupling between Combustion Chamber and Resonators in Liquid Rocket Engine (로켓엔진 연소기와 공명기간의 선형 음향 coupling에 관한 수치적 연구)

  • Park I-Sun;Sohn Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.407-410
    • /
    • 2005
  • Acoustic coupling between combustion chamber and gas-liquid scheme injectors are studied numerically in liquid rocket engine adopting linear acoustic analysis. The injectors can play a role as half-wave resonators. The combustion chamber with numerous injectors shows peculiar acoustic coupling with the injectors. As the injector length approaches a half wavelength or the original tuning length, new injector-coupled acoustic modes show up in the chamber and thereby, the acoustic-damping effect of the tuned injectors is appreciably degraded.

  • PDF