• 제목/요약/키워드: Gamma-ray shielding

검색결과 118건 처리시간 0.03초

Bentonite based ceramic materials from a perspective of gamma-ray shielding: Preparation, characterization and performance evaluation

  • Asal, Sinan;Erenturk, Sema Akyil;Haciyakupoglu, Sevilay
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1634-1641
    • /
    • 2021
  • Exposure to gamma-rays is hazardous for humans and other living beings because of their high penetration through the materials. For this reason, shielding materials (usually lead, copper and stainless steel) are used to protect against gamma rays. This study's objective was to prepare ceramic materials for gamma radiation shielding by using different natural bentonite clays. Gamma-ray attenuation performances of the prepared shielding materials at different thicknesses were investigated and evaluated for different gamma-ray energies from different standard point gamma radiation sources (251Am, 57Co, 137Cs, 60Co, and 88Y). The mass and linear attenuation coefficients of the prepared ceramics vary between 0.238 and 0.443 cm2 g-1 and between 0.479 and 1.06 cm-1, respectively, depending on their thicknesses. Results showed that these materials could be prioritized because of their evidential properties of gamma radiation protection in radiation applications.

140 keV 감마선 차폐 시 납 차폐체 두께에 따른 깊이별 선량 평가 (Shielding 140 keV Gamma Ray Evaluation of Dose by Depth According to Thickness of Lead Shield)

  • 김지영;이왕희;안성민
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권2호
    • /
    • pp.129-134
    • /
    • 2018
  • The present study made a phantom for gamma ray of 140 keV radiated from $^{99m}Tc$, examined shielding effect of lead by thickness of the shielding material, and measured surface dose and depth dose by body depth. The OSL Nano Dot dosimeter was inserted at 0, 3, 15, 40, 90, and 180 mm depths of the phantom, and when there was no shield, 0.2 mm lead shield, 0.5 mm lead shield, The depth dose was measured. Experimental results show that the total cumulative dose of dosimeters with depth is highest at 366.24 uSv without shield and lowest at 94.12 uSv with 0.5 mm lead shield. The shielding effect of 0.2 mm lead shielding was about 30.18% and the shielding effect of 0.5 mm lead shielding was 74.30%, when the total sum of the accumulated doses of radiation dosimeter was 100%. The phantom depth and depth dose measurements showed the highest values at 0 mm depth for all three experiments and the dose decreases as the depth increases. This study proved that the thicker a shielding material, the highest its shielding effect is against gamma ray of 140 keV. However, it was known that shielding material can't completely shield a body from gamma ray; it reached deep part of a human body. Aside from the International Commission on Radiation Units and Measurements (ICRU) recommending depth dose by 10 mm in thickness, a plan is necessary for employees working in department of nuclear medicine where they deal with gamma ray, which is highly penetrable, to measure depth dose by body depth, which can help them manage exposed dose properly.

Investigations on borate glasses within SBC-Bx system for gamma-ray shielding applications

  • Rammah, Y.S.;Tekin, H.O.;Sriwunkum, C.;Olarinoye, I.;Alalawi, Amani;Al-Buriahi, M.S.;Nutaro, T.;Tonguc, Baris T.
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.282-293
    • /
    • 2021
  • This paper examines gamma-ray shielding properties of SBC-Bx glass system with the chemical composition of 40SiO2-10B2O3-xBaO-(45-x)CaO- yZnO- zMgO (where x = 0, 10, 20, 30, and 35 mol% and y = z = 6 mol%). Mass attenuation coefficient (µ/ρ) which is an essential parameter to study gamma-ray shielding properties was obtained in the photon energy range of 0.015-15 MeV using PHITS Monte Carlo code for the proposed glasses. The obtained results were compared with those calculated by WinXCOM program. Both the values of PHITS code and WinXCOM program were observed in very good agreement. The (µ/ρ values were then used to derive mean free path (MFP), electron density (Neff), effective atomic number (Zeff), and half value layer (HVL) for all the glasses involved. Additionally, G-P method was employed to estimate exposure buildup factor (EBF) for each glass in the energy range of 0.015-15 MeV up to penetration depths of 40 mfp. The results reveal that gamma-ray shielding effectiveness of the SBC-Bx glasses evolves with increasing BaO content in the glass sample. Such that SBC-B35 glass has superior shielding capacity against gamma-rays among the studied glasses. Gamma-ray shielding properties of SBC-B35 glass were compared with different conventional shielding materials, commercial glasses, and newly developed HMO glasse. Therefore, the investigated glasses have potential uses in gamma shielding applications.

γ-Ray Shielding Behaviors of Some Nuclear Engineering Materials

  • Mann, Kulwinder Singh
    • Nuclear Engineering and Technology
    • /
    • 제49권4호
    • /
    • pp.792-800
    • /
    • 2017
  • The essential requirement of a material to be used for engineering purposes at nuclear establishments is its ability to attenuate the most penetrating ionizing radiations, gamma $({\gamma})-rays$. Mostly, high-Z materials such as heavy concrete, lead, mercury, and their mixtures or alloys have been used in the construction of nuclear establishments and thus termed as nuclear engineering materials (NEM). The NEM are classified into two categories, namely opaque and transparent, depending on their behavior towards the visible spectrum of EM waves. The majority of NEM are opaque. By contrast, various types of glass, which are transparent to visible light, are necessary at certain places in the nuclear establishments. In the present study, ${\gamma}-ray$ shielding behaviors (GSB) of six glass samples (transparent NEM) were evaluated and compared with some opaque NEM in a wide range of energy (15 keV-15 MeV) and optical thickness (OT). The study was performed by computing various ${\gamma}-ray$ shielding parameters (GSP) such as the mass attenuation coefficient, equivalent atomic number, and buildup factor. A self-designed and validated computer-program, the buildup factor-tool, was used for various computations. It has been established that some glass samples show good GSB, thus can safely be used in the construction of nuclear establishments in conjunction with the opaque NEM as well.

Mechanical properties and radiation shielding performance in concrete with electric arc furnace oxidizing slag aggregate

  • Lim, Hee Seob;Lee, Han Seung;Kwon, Seung Jun
    • Journal of Ceramic Processing Research
    • /
    • 제20권4호
    • /
    • pp.363-371
    • /
    • 2019
  • In this study, physical properties of normal concrete, magnetite concrete, EAF concrete, and EAF concrete with added iron powder were evaluated and a feasibility of radiation shielding is also evaluated through irradiation tests against X-rays and gamma-rays. While the unit weight of EAF concrete (3.21 t/㎥) appeared lower than that of magnetite concrete (3.50 t/㎥), the results in compressive strength of EAF concrete were greater than those in magnetite and normal concrete. While the radiation transmission rate of normal concrete reaches 26.0% in the X-ray irradiation test, only 6.0% and 9.0% of transmission rate were observed in magnetite concrete and linear relationship with unit volume weight and radiation shielding. In the gamma-ray irradiation test, the performance of EAF and magnetite concretes appeared to be similar. Through the results on the excellent physical properties and radiation shielding performance a potential applicability of EAF concrete to radiation shielding was verified.

감마선 분포탐지를 위한 조사구 및 차폐체에 관한 연구 (The study of collimator and radiation shield for the detection of the gamma-ray distribution)

  • 황영관;이남호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.944-945
    • /
    • 2016
  • 감마선 영상화 장치에서 감마선을 탐지하는 검출부는 선원을 바라보는 Collimator와 Collimator 이외의 방향에서 입사되는 감마선을 차폐하기 위한 차폐체로 구성되며 검출센서는 해당 차폐체 내부에 위치하게 된다. 감마선에 대한 분포는 Collimator의 입사구를 통해 들어오는 신호와 검출부가 바라보는 방향에 대한 정보를 통해 분포를 나타낼 수 있다. 때문에 입사구에서 들어오는 신호 외에는 잡음으로 처리해야 하므로 차폐체의 역할이 중요하다. 본 논문에서는 상용 감마선 탐지장치의 보다 축소된 납 기반의 콜리메이터 및 차폐체에 대하여 구조와 물성을 변경하여 소형, 경량화 된 Collimator 및 차폐체를 제작하였다. 또한 감마선 조사시험시설을 이용하여 감마선 입사구의 측정된 신호값을 기준으로 차폐 효율을 분석하였다. 분석결과 제작된 Collimator 및 차폐체가 영상화 장치구현를 구현하는데 보다 효율적임을 확인하였다.

  • PDF

Gamma ray attenuation behaviors and mechanism of boron rich slag/epoxy resin shielding composites

  • Mengge Dong;Suying Zhou ;He Yang ;Xiangxin Xue
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2613-2620
    • /
    • 2023
  • Excellent thermal neutron absorption performance of boron expands the potential use of boron rich slag to prepare epoxy resin matrix nuclear shielding composites. However, shielding attenuation behaviors and mechanism of the composites against gamma rays are unclear. Based on the radiation protection theory, Phy-X/PSD, XCOM, and 60Co gamma ray source were integrated to obtain the shielding parameters of boron rich slag/epoxy resin composites at 0.015-15 MeV, which include mass attenuation coefficient (µt), linear attenuation coefficient (µ), half value thickness layer (HVL), electron density (Neff), effective atomic number (Zeff), exposure buildup factor (EBF) and exposure absorption buildup factor (EABF).µt, µ, HVL, Neff, Zeff, EBF and EABF are 0.02-7 cm2/g, 0.04-17 cm-1, 0.045-20 cm, 5-14, 3 × 1023-8 × 1023 electron/g, 0-2000, and 0-3500. Shielding performance is BS4, BS3, BS3, BS1 in descending order, but worse than ordinary concrete. µ and HVL of BS1-BS4 for 60Co gamma ray is 0.095-0.110 cm-1 and 6.3-7.2 cm. Shielding mechanism is main interactions for attenuation gamma ray by BS1-BS4 are elements with higher content or higher atomic number via Photoelectric Absorption at low energy range, and elements with higher content via Compton Scattering and Pair Production in Nuclear Field at middle and higher energy range.

군 방호시설에 자철석 콘크리트 적용 시 감마선 차폐효과 분석 (Analysis of Shielding Effect on Gamma Radiation of Magnetic Aggregate Concrete Applied to Protective Facility)

  • 이상규;이호찬;이건우;한다희;박영준
    • 한국건축시공학회지
    • /
    • 제20권2호
    • /
    • pp.129-135
    • /
    • 2020
  • 핵 및 방사능전 상황에서 방사선에 의한 인명피해를 줄이기 위한 방안으로서 유개호에 자철석이 포함된 중량 콘크리트의 적용 가능성을 확인해보았다. 이에 본 연구에서는 자철광 콘크리트의 방사선 차폐효과를 분석하기 위하여 감마선원을 사용하여 차폐실험을 진행하였고 실험조건과 동일한 몬테칼로 모델링도 하였다. 그 결과 자철광의 함량이 증가할수록 감마선에 대한 차폐효과가 향상됨을 확인할 수 있었다. 향후 자철광 콘크리트가 군사적 목적의 시설물에 적용될 경우 방사선 차폐 측면에서 효과를 얻을 수 있을 것이라 기대한다.

Green synthesis of Lead-Nickel-Copper nanocomposite for radiation shielding

  • B.M. Chandrika;Holaly Chandrashekara Shastry Manjunatha;R. Munirathnam;K.N. Sridhar;L. Seenappa;S. Manjunatha;A.J. Clement Lourduraj
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4671-4677
    • /
    • 2023
  • For the first time Pb, Ni, and Cu nanocomposites were synthesized by versatile solution combustion synthesis using Aloevera extract as a reducing agent, to study the potential applications in X-ray/gamma, neutron, and Bremsstrahlung shielding. The synthesized Lead-Nickel-Copper (LNC) nanocomposites were characterized by PXRD, SEM, UV-VIS, and FTIR for the confirmation of successful synthesis. PXRD analysis confirmed the formation of multiphase LNC NCs and the Scherrer equation and the W-H plot gave the average crystal sizes of 19 nm and 17 nm. Surface morphology using SEM and EDX confirmed the presence of LNC NCs. Strong absorption peaks were analyzed by UV visible spectroscopy and the direct energy gap is found to be 3.083 eV. Functional groups present in the LNC NCs were analyzed by FTIR spectroscopy. X-ray/gamma radiation shielding properties were measured using NaI(Tl) detector coupled with MCA. It is found to be very close to Pb. Neutron shielding parameters were compared with traditional shielding materials and found LNC NCs are better than lead and concrete. Secondary radiation shielding known as Bremsstrahlung shielding characteristics also studied and found that LNC NCs are best in secondary radiation shielding. Hence LNC NCs find shielding applications in ionizing radiation such as X-ray/gamma and neutron radiation.

Gamma ray exposure buildup factor and shielding features for some binary alloys using MCNP-5 simulation code

  • Rammah, Y.S.;Mahmoud, K.A.;Mohammed, Faras Q.;Sayyed, M.I.;Tashlykov, O.L.;El-Mallawany, R.
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2661-2668
    • /
    • 2021
  • Gamma radiation shielding features for three series of binary alloys identified as (Pb-Sn), (Pb-Zn), and (Zn-Sn) have been investigated. The mass attenuation coefficients (µ/ρ) for the selected alloys were simulated using the MCNP-5 code in the energy range between 0.01 and 15 MeV. Moreover, the (µ/ρ) values were computed using WinXCOM database in the same energy range to validate the simulation results. Results reveal a good agreement between the simulated and computed values. The half value layer (HVL), mean free path (MFP), effective atomic number (Zeff) and exposure buildup factor (EBF) were evaluated for the selected binary alloys. Results showed that the PS1, PZ1, and ZS2 alloys have the best shielding parameters and better than the commercially standard and available radiation shielding materials. Therefore, the investigated alloys can be used as effective radiation shielding materials against gamma ray with energies between 0.01 and 15 MeV.