• Title/Summary/Keyword: Gamma source

Search Result 670, Processing Time 0.024 seconds

Development of Neutron Induced Prompt γ-ray Spectroscopy System Using 252Cf (252Cf 선원을 이용한 즉발감마선 계측시스템 구성)

  • Park, Yong-Joon;Song, Byung-Chul;Jee, Kwang-Yong
    • Analytical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.12-24
    • /
    • 2003
  • For the design and set-up of neutron induced prompt ${\gamma}$-ray spectroscopy system using $^{252}Cf$ neutron source, the effects of shielding and moderator materials have been examined. The $^{252}Cf$ source being used for TLD badge calibration in Korea Atomic Energy Research Institute was utilized for this preliminary experiment. The ${\gamma}$-ray background and prompt ${\gamma}$-ray spectrum of the sample containing Cl were measured using HPGe (GMX 60% relative efficiency) located at the inside of the system connected to notebook PC at the outside of the system (about 20 meter distance). The background activities of neutron and ${\gamma}$-rays were measured with neutron survey meter as well as ${\gamma}$-ray survey meters, respectively and the system was designed to minimize the activities. Prompt ${\gamma}$-ray spectrum was measured using ${\gamma}$-${\gamma}$ coincident system for reduce the background and the continuum spectrum. The optimum system was designed and set up using the experimental data obtained.

Design of Source Driver for QVGA-Scale LDI Using Mixed Driving Method (Mixed Driving 방식을 이용한 QVGA급 LDI의 Source Driver 설계)

  • Kim, Hak-Yun;Ko, Young-Keun;Lee, Sung-Woo;Choi, Ho-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.11
    • /
    • pp.40-47
    • /
    • 2009
  • In this paper, we present the design of a source driver of QVGA scale TFT-LCD driver IC which uses a mixed driving method and performs $\gamma$-correction to improve image. The source driver with 240 RGB ${\times}$ 320 dots resolution drives a TFT-LCD panel through 720 channels and implements 262k colors using 18-bit RGB data format. The mixed driving method is a mixture the channel amp. driving method with high drivability and the gray amp. driving method with small area, which remarkably reduces channel driver areas. The driver has been designed using the $0.35{\mu}m$ Magnachip embedded DRAM technology and simulated using the HSPICE simulator. The results show that our source driver operates well with y-correction and the channel driver has $17{\mu}s$ channel driving time with only 78 driving amplifiers and control logic.

Development of High-Sensitivity Detection Sensor and Module for Spatial Distribution Measurement of Multi Gamma Sources (감마선원의 공간분포 가시화 및 3D모델링을 위한 운용환경 개발)

  • Song, Keun-Young;Lim, Ji-Seok;Choi, Jung-Huk;Yuk, Young-Ho;Hwang, Young-Gwan;Lee, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.702-704
    • /
    • 2017
  • In case of dismantling of nuclear power generation facility or radiation accident, the accurate information of gammaray source is essential for rapid decontamination. In order to more efficiently represent the position of the gamma ray to be removed, we create a spatial domain based on the real image. And we can perform decontamination of gamma-ray source more quickly by expressing the distribution of radiation source. The developed gamma ray imaging device overlaps with the visible image after gamma - ray detection and provides only two - dimensional image, but it does not show the distance information to the source. In this paper, we have developed a operation environment using the 3D visualization model for reporting effective decontamination operation.

  • PDF

Spectroscopic Properties of Gamma-ray Detector to Measure the Burnup of Spent Nuclear Fuel (사용후핵연료 연소도 측정을 위한 감마선 검출기의 분광특성 연구)

  • Hey Min Park;Tae Young Kim;Yang Soo Song;Un Jang Lee;Cheol Min Ham
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.119-125
    • /
    • 2023
  • Burnup of spent nuclear fuel should be determined accurately for the safety storage of spent nuclear fuel. In this study, a gamma detection system was developed as a part of basic research to measure the burnup of spent nuclear fuel, and its performance was evaluated using a calibration source. The prototype of the gamma detection system was based on a semiconductor sensor using a CZT (Cadmium Zinc Telluride). For quantitative evaluation, tests were conducted using 137Cs, 134Cs and 252Cf calibration source. In the performance evaluation, Its field applicability was verified by assessing the energy resolution, the detection linearity and the shielding attenuation according to the nuclide.

Double Opportunistic Transmit Cooperative Relaying System with GSC in Rayleigh Fading Channels

  • Kim, Nam-Soo;Lee, Ye-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.270-275
    • /
    • 2010
  • In a conventional opportunistic transmit (COT) cooperative relaying system, only the relays that receive signal-to-noise ratio (SNR) from the source and that exceed the threshold transmit to the destination. The COT system, however, only considers the SNR of the source-relay (S-R) path regardless that the SNR of the relay-destination (R-D) path is the opportunistic transmission condition. For that reason, it is not guaranteed that all the transmitted signals from relays exceed the threshold at the destination. Therefore we propose a double opportunistic transmit (DOT) cooperative relaying system - when both of the received SNR from a source and from a destination exceed the threshold, the relay transmits to the destination. It is shown that the proposed DOT system reduces power consumption by 6.9, 20.9, 32.4, and 41.4 % for K =3, 5, 7, and 9, respectively under the given condition of $P_{out}=1{\times}10^{-3}$ and $\overline{\gamma}_{SR}/\Gamma_{SR}$=30 dB, compared to the COT system. We noticed that the performance of the DOT system is superior to that of the COT system for the identical number of active transmit relays under the same condition of the normalized average SNR of $\overline{\gamma}_{RD}/\Gamma_{RD}$.

Similarity analysis of pixelated CdTe semiconductor gamma camera image using a quadrant bar phantom for nuclear medicine: Monte Carlo simulation study

  • Park, Chan Rok;Kang, Seong-Hyeon;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1947-1954
    • /
    • 2021
  • In the nuclear medicine imaging, quality control (QC) process using quadrant bar phantom is fundamental aspect of evaluating the spatial resolution. In addition, QC process of gamma camera is performed by daily or weekly. Recently, Monte Carlo simulation using the Geant4 application for tomographic emission (GATE) is widely applied in the pre-clinical nuclear medicine field for modeling gamma cameras with pixelated cadmium telluride (CdTe) semiconductor detector. In this study, we modeled a pixelated CdTe semiconductor detector and quadrant bar phantom (0.5, 1.0, 1.5, and 2.0 mm bar thicknesses) using the GATE tool. Similarity analysis based on correlation coefficients and peak signal-to-noise ratios was performed to compare image qualities for various source to collimator distances (0, 2, 4, 6, and 8 cm) and collimator lengths (0.2, 0.4, 0.6, 0.8, and 1.0 cm). To this end, we selected reference images based on collimator length and source to collimator distance settings. The results demonstrate that as the collimator length increases and the source to collimator distance decreases, the similarity to reference images improves. Therefore, our simulation results represent valuable information for the modeling of CdTe-based semiconductor gamma imaging systems and QC phantoms in the field of nuclear medicine.

In-service Investigation on the Flow Dynamics of a Trayed Column from the Measurement of an Internal Density by using a Gamma Absorption Technique (Gamma Absorption Technique를 이용한 Trayed Column의 가동 중 내부 밀도분포 측정에 의한 유체 유동상태 진단)

  • Kim, Jae-Ho;Kim, Jong-Bum;Kim, Jin-Seop;Lee, Na-Young;Lee, Sung-Sik;Jang, Seok-Joon;Jung, Sung-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • A distillation tower is one of the important facilities which separates and refines a crude oil stream according to certain boiling points. Its operation efficiency can affect the productivity of a refinery substantially. The objective of this study is to elucidate some operational information on the internal conditions of a distillation tower from a measurement of density profile by using a sealed gamma-ray source and a radiation detector. Gamma radiation counts were measured by a BGO detector positioned diametrically outside the tower-wall, opposite to the gamma source(Co-60) as the detector and the source were lowered concurrently. From the results, structural abnormality of the trays was not found inside the tower. Considering the flow distribution patterns, however, a vapor phase was dominantly formed at the upper part of the tower and a liquid phase at the lower part. From the gamma scanning of the distillation tower, it is anticipated that the gamma absorption technique can be used as an important tool for confirming the structural soundness of trays and investigating flow distribution in refinery facilities.

Development and evaluation of a compact gamma camera for radiation monitoring

  • Dong-Hee Han;Seung-Jae Lee;Hak-Jae Lee;Jang-Oh Kim;Kyung-Hwan Jung;Da-Eun Kwon;Cheol-Ha Baek
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2873-2878
    • /
    • 2023
  • The purpose of this study is to perform radiation monitoring by acquiring gamma images and real-time optical images for 99mTc vial source using charge couple device (CCD) cameras equipped with the proposed compact gamma camera. The compact gamma camera measures 86×65×78.5 mm3 and weighs 934 g. It is equipped with a metal 3D printed diverging collimator manufactured in a 45 field of view (FOV) to detect the location of the source. The circuit's system uses system-on-chip (SoC) and field-programmable-gate-array (FPGA) to establish a good connection between hardware and software. In detection modules, the photodetector (multi-pixel photon counters) is tiled at 8×8 to expand the activation area and improve sensitivity. The gadolinium aluminium gallium garnet (GAGG) measuring 0.5×0.5×3.5 mm3 was arranged in 38×38 arrays. Intrinsic and extrinsic performance tests such as energy spectrum, uniformity, and system sensitivity for other radioisotopes, and sensitivity evaluation at edges within FOV were conducted. The compact gamma camera can be mounted on unmanned equipment such as drones and robots that require miniaturization and light weight, so a wide range of applications in various fields are possible.

A GPU-based point kernel gamma dose rate computing code for virtual simulation in radiation-controlled area

  • Zhihui Xu;Mengkun Li;Bowen Zou;Ming Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1966-1973
    • /
    • 2023
  • Virtual reality technology has been widely used in the field of nuclear and radiation safety, dose rate computing in virtual environment is essential for optimizing radiation protection and planning the work in radioactive-controlled area. Because the CPU-based gamma dose rate computing takes up a large amount of time and computing power for voxelization of volumetric radioactive source, it is inefficient and limited in its applied scope. This study is to develop an efficient gamma dose rate computing code and apply into fast virtual simulation. To improve the computing efficiency of the point kernel algorithm in the reference (Li et al., 2020), we design a GPU-based computing framework for taking full advantage of computing power of virtual engine, propose a novel voxelization algorithm of volumetric radioactive source. According to the framework, we develop the GPPK(GPU-based point kernel gamma dose rate computing) code using GPU programming, to realize the fast dose rate computing in virtual world. The test results show that the GPPK code is play and plug for different scenarios of virtual simulation, has a better performance than CPU-based gamma dose rate computing code, especially on the voxelization of three-dimensional (3D) model. The accuracy of dose rates from the proposed method is in the acceptable range.

Influence of Medium Composition on the Production of $\gamma$-Linolenic Acid by Mucor sp. KCTC 8405P (Mucor sp. KCTC 8405P의 배지조성이 감마 리놀렌산의 생산에 미치는 영향)

  • Kang, Hun-Seung;Shin, Hyun-Kyung
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.568-573
    • /
    • 1989
  • As a way to determine the optimal culture conditions for the production of ${\gamma}$-linolenic acid by Mucor sp. KCTC 8405P, the influence of different carbon and nitrogen sources, initial pH, and C/N ratio of medium was investigated. Glucose was found to be the best carbon source in terms of lipid content and ${\gamma}$-linolenic acid yield. Ammonium sulfate and organic nitrogen sources such as urea and peptone resulted in relatively increased lipid and ${\gamma}$-linolenic acid production. The highest accumulation of lipid was obtained at a C/N ratio of 56.6 using glucose and (NH$_4$)$_2$SO$_4$ as carbon and nitrogen source, respectively. It was found that the lipid content increased significantly with increasing initial pH of medium up to pH 9.0. The influence of mixed carbon source on the ${\gamma}$-linolenic acid yield was also investigated. High accumulation of lipids, 315 mg/100 ml medium, and 13-14% of ${\gamma}$-linolenic acid content in the cellular lipid were obtained in a shaking culture containing 3% of glucose and 2% sodium acetate as carbon source and 0.1% of (NH$_4$)$_2$SO$_4$ as nitrogen source at pH 8.0.

  • PDF