• Title/Summary/Keyword: Gamma evaluation

검색결과 713건 처리시간 0.022초

수중 방사선 모니터링 시스템의 성능평가를 위한 수중 내 최소검출가능농도 산출 (Evaluation of Minimum Detectable Activity for Underwater Radiation Monitoring System)

  • 박장근;정성희;오대민;문진호
    • 방사선산업학회지
    • /
    • 제17권3호
    • /
    • pp.219-224
    • /
    • 2023
  • A high-efficiency underwater radiation monitoring system, HydroGamma, has been developed for detecting 137Cs and 131I in the event of waterborne radiation contamination. The system consists of a 3-inch NaI (Tl) detector, solar panels for power supply, data acquisition and transmission modules, and batteries. HydroGamma also includes a 40K calibration source for remote performance evaluation and energy calibration. In this study, some simulations and experiments were carried out to evaluate the minimum detectable activities (MDA) of HydroGamma. We installed the HydroGamma at Tapjeongho Lake in Nonsan-si and acquired background data since MDA is calculated based on the experimental background data. The results show that the minimum detectable activities for 137Cs and 131I were 1.78Bq L-1 and 1.81Bq L-1, respectively even though the gamma rays emitted from 40K(1,460 keV) affect the minimum detectable activities for them.

사용후핵연료 연소도 측정을 위한 감마선 검출기의 분광특성 연구 (Spectroscopic Properties of Gamma-ray Detector to Measure the Burnup of Spent Nuclear Fuel)

  • 박혜민;김태영;송양수;이운장;함철민
    • 방사선산업학회지
    • /
    • 제17권1호
    • /
    • pp.119-125
    • /
    • 2023
  • Burnup of spent nuclear fuel should be determined accurately for the safety storage of spent nuclear fuel. In this study, a gamma detection system was developed as a part of basic research to measure the burnup of spent nuclear fuel, and its performance was evaluated using a calibration source. The prototype of the gamma detection system was based on a semiconductor sensor using a CZT (Cadmium Zinc Telluride). For quantitative evaluation, tests were conducted using 137Cs, 134Cs and 252Cf calibration source. In the performance evaluation, Its field applicability was verified by assessing the energy resolution, the detection linearity and the shielding attenuation according to the nuclide.

Gamma 및 Generalized Gamma 분포 모형에 의한 적정 설계홍수량의 유도 (I) -Gamma 분포 모형을 중심으로- (Derivation of Optimal Design Flood by Gamma and Generalized Gamma Distribution Models(I) - On the Gamma Distribution Models -)

  • 이순혁;박명근;정연수;맹승진;류경식
    • 한국농공학회지
    • /
    • 제39권3호
    • /
    • pp.83-95
    • /
    • 1997
  • This study was conducted to derive optimal design floods by Gamma distribution models of the annual maximum series at eight watersheds along Geum , Yeong San and Seom Jin river Systems, Design floods obtained by different methods for evaluation of parameters and for plotting positions in the Gamma distribution models were compared by the relative mean errors and graphical fit along with 95% confidence interval plotted on Gamma probability paper. The results were analyzed and summarized as follows. 1.Adequacy for the analysis of flood flow data used in this study was confirmed by the tests of Independence, Homogeneity and detection of Outliers. 2.Basic statistics and parameters were calculated by Gamma distribution models using Methods of Moments and Maximum Likelihood. 3.It was found that design floods derived by the method of maximum likelihood and Hazen plotting position formular of two parameter Gamma distribution are much closer to those of the observed data in comparison with those obtained by other methods for parameters and for plotting positions from the viewpoint of relative mean errors. 4.Reliability of derived design floods by both maximum likelihood and method of moments with two parameter Gamma distribution was acknowledged within 95% confidence interval.

  • PDF

SCALE-ORIGEN-ARP를 이용한 사용후핵연료 내 중성자 및 감마선원 분석 (An analysis of neutron sources and gamma-ray in spent fuels using SCALE-ORIGEN-ARP)

  • 차소희;박광헌
    • 한국표면공학회지
    • /
    • 제56권1호
    • /
    • pp.84-93
    • /
    • 2023
  • The spent nuclear fuel is burned during the planned cycle in the plant and then generates elements such as actinide series, fission products, and plutonium with a long half-life. An 'interim storage' step is needed to manage the high radioactivity and heat emitted by nuclides until permanent-disposal. In the case of Korea, there is no space to dispose of high-level radioactive waste after use, so there is a need for a period of time using interim storage. Therefore, the intensity of neutrons and gamma-ray must be determined to ensure the integrity of spent nuclear fuel during interim storage. In particular, the most important thing in spent nuclear fuel is burnup evaluation, estimation of the source term of neutrons and gamma-ray is regarded as a reference measurement of the burnup evaluation. In this study, an analysis of spent nuclear fuel was conducted by setting up a virtual fuel burnup case based on CE16×16 fuel to check the total amount and spectrum of neutron, gamma radiation produced. The correlation between BU (burnup), IE (enrichment), and CT (cooling time) will be identified through spent nuclear fuel burnup calculation. In addition, the composition of nuclide inventory, actinide and fission products can be identified.

열간 등압 성형된 니켈기 초내열 합금 IN 713C 분말 소결체의 특성 평가 (Characterization of Hot Isostatically Pressed Ni-Based Superalloy IN 713C)

  • 김영무;김은표;정성택;이성;노준웅;이성호;권영삼
    • 한국분말재료학회지
    • /
    • 제20권4호
    • /
    • pp.264-268
    • /
    • 2013
  • Nickel-based superalloy IN 713C powders have been consolidated by hot isostatic pressing (HIPing). The microstructure and mechanical properties of the superalloys were investigated at the HIPing temperature ranging from $1030^{\circ}C$ to $1230^{\circ}C$. When the IN 713C powder was heated above ${\gamma}^{\prime}$ solvus temperature (about $1180^{\circ}C$), the microstructure was composed of the austenitic FCC matrix phase ${\gamma}$ plus a variety of secondary phases, such as ${\gamma}^{\prime}$ precipitates in ${\gamma}$ matrix and MC carbides at grain boundaries. The yield and tensile strengths of HIPed specimens at room temperature were decreased while the elongation and reduction of area were increased as the processing temperature increased. At $700^{\circ}C$, the strength was similar regardless of HIPing temperature; however, the ductility was drastically increased with increasing the temperature. It is considered that these properties compared to those of cast products are originated from the homogeneity of microstructure obtained from a PM process.

Pixelated Breast-Specific Gamma Imaging(BSGI) 감마 카메라를 이용한 갑상선 검사의 유용성 평가 (The Evaluation of Usefulness of Pixelated Breast-Specific Gamma Imaging in Thyroid scan)

  • 정은미;성지혜;유희재
    • 핵의학기술
    • /
    • 제15권1호
    • /
    • pp.90-93
    • /
    • 2011
  • Pixelated BSGI 감마카메라는 높은 분해능과 민감도를 특징으로 하며, 좁은 FOV로 인하여 검출기와 장기간의 거리를 최소화 할 수 있는 장점이 있다. 따라서, 국소 장기인 갑상선, 부갑상선, 담낭 등의 검사에 유용하다고 알려져 있다. 일반적으로 핵의학 검사에서 감마카메라를 사용하여 국소 장기를 영상화할 때 상의 크기를 확대하고, 우수한 분해능을 획득하고자 바늘구멍 조준기(Pinhole Collimator)를 사용한다. 이에 본 연구에서는 대표적인 국소장기인 갑상선 검사를 대상으로 바늘구멍 조준기로 획득한 영상 과 Pixilated BSGI 감마카메라로 획득한 영상을 비교하여 갑상선 검사 시 Pixilated Breast-Specific Gamma Imaging(BSGI) 감마카메라의 유용성을 평가 하였다. $^{99m}TcO_4^-$을 넣은 갑상선 팬텀을 이용 하였다. 바늘구멍 조준기를 장착한 INFINIA 감마카메라와 저 에너지 고 분해능용 평행다중구멍 조준기를 장착한 Pixelated BSGI 감마카메라에서 300 sec 또는 100 kcts로 설정 후 영상을 획득하였다. 모든 영상 획득은 현재 서울아산병원에서 실제 환자에게 적용하고 있는 갑상선 검사 절차와 동일한 방법으로 시행하였다. 그 결과 INFINIA 감마카메라와 Pixelated BSGI 감마카메라의 갑상선 팬텀 영상을 비교한 결과 Pixellated BSGI 감마카메라에서 갑상선 팬텀의 열소(hot spot)와 냉소(cold spot)의 구분을 더욱 명확하게 확인 할 수 있었다. 갑상선 검사시 Pixilated BSGI 감마카메라는 영상획득 시간을 단축시킬 수 있을 뿐만 아니라 더 나아가 투여하는 방사성의약품의 양을 줄임으로써 환자의 피폭을 경감 시킬 수 있다. 촬영시간의 단축은 환자의 호흡 및 움직임을 최소화하여 더 좋은 영상을 얻을 수 있다. 또한 Pixelated BSGI 감마카메라의 검출기는 작고 다양한 회전이 가능하므로 장기와 검출기 사이 거리를 최소화 할 수 있고, 장비자체의 이동도 가능하므로 환자의 이동이 불가 한 경우 매우 유용하다. 그러나 이러한 장점에도 불구하고 Pixelated (BSGI) 감마카메라는 방사성의약품의 집적이 매우 낮은 유방 촬영 전용으로 제작했기 때문에 2000 cts/s 이상에서는 불감시간 효과가 발생한다. 따라서 Pixelated BSGI 감마카메라를 핵의학 갑상선 검사에 적용할 경우 방사성의약품의 투여량의 조절과 영상획득 시간의 조정에 대한 연구가 더 필요할 것으로 사료된다.

  • PDF

감마선 조사에 따른 분말 타락죽의 품질 평가 (Quality Evaluation of Gamma-Irradiated Tarakjuk Powder, Korean Milk Porridge)

  • 한인준;송범석;김재경;박종흠;이주운;강일준;전순실;김재훈
    • 방사선산업학회지
    • /
    • 제6권3호
    • /
    • pp.239-244
    • /
    • 2012
  • This study was conducted to investigate bacterial growth, viscosity, color, and sensory properties of gamma-irradiated Tarakjuk powder, a Korean milk porridge powder, at 1, 3, 5, 7, and 10 kGy. The total aerobic bacteria in non-irradiated Tarakjuk powder was $2.56{\log}\;CFU{\cdot}g^{-1}$, whereas it was not observed within the detection limit of $2{\log}\;CFU{\cdot}g^{-1}$ in samples irradiated at more than 1 kGy. Spore-forming bacteria, however, were not observed in all samples within the detection limit of $1{\log}\;CFU{\cdot}g^{-1}$. The viscosity of rehydrated Tarakjuk after gamma irradiation significantly decreased from 16,770 cP to 4,060 cP when irradiated at 10 kGy. The redness ($a^*$ value) and yellowness ($b^*$ value) evaluated using a colorimeter were significantly increased according to the increase in irradiation dose (p<0.05), while there was no difference in color evaluation conducted by panels. The overall acceptance decreased as the irradiation dose increased, and the 5 kGy sample was 4.0 (normal) on a 7-point scale. As a result, it is considered that a gamma irradiation of 5 kGy is enough to sterilize Tarakjuk powder with a acceptable sensory quality.

A New Method for the Determination of Carrier Lifetime in Silicon Wafers from Conductivity Modulation Measurements

  • Elani, Ussama A.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제8권4호
    • /
    • pp.311-317
    • /
    • 2008
  • The measurement of dark ${\sigma}_D$, gamma-induced ${\sigma}_{\gamma}$ conductivities and the expected conductivity modulation ${\Delta}_{\sigma}$ in silicon wafers/samples is studied for developing a new technique for carrier lifetime evaluation. In this paper a simple method is introduced to find the carrier lifetime variations with the measured conductivity and conductivity modulation under dark and gamma irradiation conditions. It will be concluded that this simple method enables us to give an improved wafer evaluation, processing and quality control in the field of photovoltaic materials and other electronic devices.