• Title/Summary/Keyword: Gamma camera image

Search Result 138, Processing Time 0.027 seconds

Assessment of Vascularization within Hydroxyapatite Ocular Implant by Bone Scintigraphy: Comparative Analysis of Planar and SPECT Imaging (Hydroxyapatite 안구보충물삽입술 후 골신티그라피를 이용한 섬유혈관증식 평가: 평면영상과 SPECT 영상에서의 비교)

  • Lim, Seok-Tae;Sohn, Myung-Hee;Park, Soon-Ah
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.6
    • /
    • pp.475-483
    • /
    • 1999
  • Purpose: Complete fibrovascular ingrowth within the hydroxyapatite ocular implant is necessary for peg drilling which is performed to Prevent infection and to provide motility to the ocular prosthesis. We compared planar bone scintigraphy and SPECT for the evaluation of the vascularization within hydroxyapatite ocular implants. Materials and Methods: Seventeen patients (M:F: 12:5, mean age; $50.4{\pm}17.5$ years) who had received a coralline hydroxyapatite ocular implant after enucleation surgery were enrolled. Patients underwent Tc-99m MDP planar bone and SPECT imaging by dual head gamma camera after their implant surgery (interval: $197{\pm}81$ days). Uptake on planar and SPECT images was graded visually as less than (grade 1), equal to (grade 2), and greater than (grade 3) nasal bridge activity. Quantitative ratio of implanted to non-implanted intraorbital activity was also measured. Vascularization within hydroxyapatite implants was confirmed by slit lamp examination and ocular movement. Results: All but three patients were considered to be vascularized within hydroxyapatite implants. In visual analysis of planar image and SPECT, grade 1 was noted in 9/18 (50%) and 6/18 (33%), respectively. Grade 2 pattern was 7/18 (39%) and 4/18 (22%), and grade 3 pattern was 2/18 (11%) and 8/18 (44%) respectively. When grade 2 or 3 was considered to be positive for vascularization, the sensitivity of planar and SPECT imaging were 60% (9/15) and 80% (12/15), respectively. In 3 patients with incomplete vascularization, both planar and SPECT showed grade 1 uptake The orbital activity ratios on planar imaging were not significantly different between complete and incomplete vascularization ($1.96{\pm}0.87$ vs $1.17{\pm}0.08$, p>0.05), however, it was significantly higher on SPECT in patients with complete vascularization ($8.44{\pm}5.45$ vs $2.20{\pm}0.87$, p<0.05). Conclusion: In the assessment of fibrovascular ingrowth within ocular implants by Tc-99m MDP bone scintigraphy, SPECT image appears to be more effective than planar scintigraphy.

  • PDF

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF

Quantitative Indices of Small Heart According to Reconstruction Method of Myocardial Perfusion SPECT Using the 201Tl (201Tl을 이용한 심근관류 SPECT에서 재구성 방법에 따른 작은 용적 심장의 정량 지표 변화)

  • Kim, Sung Hwan;Ryu, Jae Kwang;Yoon, Soon Sang;Kim, Eun Hye
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.1
    • /
    • pp.18-24
    • /
    • 2013
  • Purpose: Myocardial perfusion SPECT using $^{201}Tl$ is an important method for viability of left ventricle and quantitative evaluation of cardiac function and now various reconstruction methods are used to improve the image quality. But in case of small sized heart, you should always be careful because of the Partial Volume Effect which may cause errors of quantitative indices at the reconstruction step. So, In this study, we compared those quantitative indices of left ventricle according to the reconstruction method of myocardial perfusion SPECT with the Echocardiography and verified the degree of the differences between them. Materials and Methods: Based on ESV 30 mL of Echocardiography, we divided 278 patients (male;98, female;188, Mean age;$65.5{\pm}11.1$) who visited the Asan medical center from February to September, 2012 into two categories; below the criteria to small sized heart, otherwise, normal or large sized heart. Filtered and output each case, we applied the method of FBP and OSEM to each of them, and calculated EDV, ESV and LVEF, and we conducted statistical processing through Repeated Measures ANOVA with indices that measured in Echocardiography. Results: In case of men and women, there were no significant difference in EDV between FBP and OSEM (p=0.053, p=0.098), but in case of Echocardiography, there were meaningful differences (p<0.001). The change of ESV especially women in small sized heard, significant differences has occurred among FBP, OSEM and Echocardiography. Also, in LVEF, there were no difference in men and women who have normal sized heart among FBP, OSEM and Echocardiography (p=0.375, p=0.969), but the women with small sized heart have showed significant differences (p<0.001). Conclusion: The change in quantitative indices of left ventricle between Nuclear cardiology image reconstruction, no difference has occurred in the patients with normal sized heart but based on ESV, under 30 mL of small sized heart, especially in female, there were significant differences in FBP, OSEM and Echocardiography. We found out that overestimated LVEF caused by PVE can be reduced in average by applying OSEM to all kinds of gamma camera, which are used in analyzing the differences.

  • PDF

Imaging of Herpes Simplex Virus Type 1 Thymidine Kinase Gene Expression with Radiolabeled 5-(2-iodovinyl)-2'-deoxyuridine (IVDU) in liver by Hydrodynamic-based Procedure (Hydrodynamic-based Procedure를 이용한 간에서의 HSV1-tk 발현 확인을 위한 방사표지 5-(2-iodovinyl)-2'-deoxyuridine (IVDU)의 영상연구)

  • Song, In-Ho;Lee, Tae-Sup;Kang, Joo-Hyun;Lee, Yong-Jin;Kim, Kwang-Il;An, Gwang-Il;Chung, Wee-Sup;Cheon, Gi-Jeong;Choi, Chang-Woon;Lim, Sang-Moo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.468-477
    • /
    • 2009
  • Purpose: Hydrodynamic-based procedure is a simple and effective gene delivery method to lead a high gene expression in liver tissue. Non-invasive imaging reporter gene system has been used widely with herpes simplex virus type 1 thymidine kinase (HSV1-tk) and its various substrates. In the present study, we investigated to image the expression of HSV1-tk gene with 5-(2-iodovinyD-2'-deoxyuridine (IVDU) in mouse liver by the hydrodynamicbased procedure. Materials and Methods: HSV1-tk or enhanced green fluorescence protein (EGFP) encoded plasmid DNA was transferred into the mouse liver by hydrodynaminc injection. At 24 h post-injection, RT-PCR, biodistribution, fluorescence imaging, nuclear imaging and digital wholebody autoradiography (DWBA) were performed to confirm transferred gene expression. Results: In RT-PCR assay using mRNA from the mouse liver, specific bands of HSV1-tk and EGFP gene were observed in HSV1-tk and EGFP expressing plasmid injected mouse, respectively. Higher uptake of radiolabeled IVDU was exhibited in liver of HSV1-tk gene transferred mouse by biodistribution study. In fluorescence imaging, the liver showed specific fluorescence signal in EGFP gene transferred mouse. Gamma-camera image and DWBA results showed that radiolabeled IVDU was accumulated in the liver of HSV1-tk gene transferred mouse. Conclusion: In this study, hydrodynamic-based procedure was effective in liver-specific gene delivery and it could be quantified with molecular imaging methods. Therefore, co-expression of HSV1-tk reporter gene and target gene by hydrodynamic-based procedure is expected to be a useful method for the evaluation of the target gene expression level with radiolabeled IVDU.

Study on the Usefulness of Using Anterior and Posterior Views for Calculation of Total Relative Uptake Ratio in 99mTc-DMSA Renal Scan (99mTc-DMSA 검사에서 상대 신섭취율 산출 시 양면상 촬영의 유용성에 대한 고찰)

  • Kim, Joo-Yeon;Lee, Han-Wool;Kwon, O-Jun;Kim, Jung-Yul;Park, Min-Soo;Cho, Seok-Won;Kang, Chun-Goo;Kim, Jae-Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • Purpose $^{99m}Tc-DMSA$ renal scintigraphy serves as location, size and shape of kidney, so it has been used for diagnosis and passage observation after the operation or treatment. There are 3 methods of calculating the relative renal uptake ratio such as geometric mean of the counts from the anterior and posterior views, arithmetical mean from the only posterior view and posterior view which applied the renal depths. In this study, we seek to correlation between the change of total relative uptake ratio according to different inspection methods of obtaining the renal count rate. Materials and Methods The phantom experiments proceeded 5 times depending on each renal depth with the kidney phantom and tissue equivalent materials. In the clinical research, we investigated 36 adult patients who had visited our hospital from february to october, 2014 and received $^{99m}Tc-DMSA$ renal scan. The equipment was used as a gamma camera named INFINIA (General Electric Healthcare, milwaukee, USA) and we drew the region of interests through semiautomatic method by using Xeleris Ver. 2.1220 of GE. In addition, we obtained the lateral view of kidney to measure the renal depth of each patient. Then the results were compared with 3 methods of calculating relative renal uptake ratio. Results The phantom studies show when the difference between the left ant right kidney depth were less than 1 cm, there were no statistically significant difference among values calculated through anterior and posterior views and only posterior view (P>0.05), while the excess of 1cm, the results showed a statistically significant change in the value (P<0.05). In case of clinical research, the correlation between total relative uptake ratio by obtaining both sides of image and posterior view applied the kidney depth (r=0.999) was higher than by obtaining only posterior view and applying the kidney depth to one side image (r=0.988). Conclusion This study has found that, the difference of calculating total relative uptake ratio compared with obtaining anterior and posterior views and only posterior view. In order to reduce the error, we recommend the method of obtaining anterior and posterior views and is considered to be useful, particularly the patients have similar uptake ratio of left and right kidney and difficulties of measurements of kidney depth.

  • PDF

Increase of Tc-99m RBC SPECT Sensitivity for Small Liver Hemangioma using Ordered Subset Expectation Maximization Technique (Tc-99m RBC SPECT에서 Ordered Subset Expectation Maximization 기법을 이용한 작은 간 혈관종 진단 예민도의 향상)

  • Jeon, Tae-Joo;Bong, Jung-Kyun;Kim, Hee-Joung;Kim, Myung-Jin;Lee, Jong-Doo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.6
    • /
    • pp.344-356
    • /
    • 2002
  • Purpose: RBC blood pool SPECT has been used to diagnose focal liver lesion such as hemangioma owing to its high specificity. However, low spatial resolution is a major limitation of this modality. Recently, ordered subset expectation maximization (OSEM) has been introduced to obtain tomographic images for clinical application. We compared this new modified iterative reconstruction method, OSEM with conventional filtered back projection (FBP) in imaging of liver hemangioma. Materials and Methods: Sixty four projection data were acquired using dual head gamma camera in 28 lesions of 24 patients with cavernous hemangioma of liver and these raw data were transferred to LINUX based personal computer. After the replacement of header file as interfile, OSEM was performed under various conditions of subsets (1,2,4,8,16, and 32) and iteration numbers (1,2,4,8, and 16) to obtain the best setting for liver imaging. The best condition for imaging in our investigation was considered to be 4 iterations and 16 subsets. After then, all the images were processed by both FBP and OSEM. Three experts reviewed these images without any information. Results: According to blind review of 28 lesions, OSEM images revealed at least same or better image quality than those of FBP in nearly all cases. Although there showed no significant difference in detection of large lesions more than 3 cm, 5 lesions with 1.5 to 3 cm in diameter were detected by OSEM only. However, both techniques failed to depict 4 cases of small lesions less than 1.5 cm. Conclusion: OSEM revealed better contrast and define in depiction of liver hemangioma as well as higher sensitivity in detection of small lesions. Furthermore this reconstruction method dose not require high performance computer system or long reconstruction time, therefore OSEM is supposed to be good method that can be applied to RBC blood pool SPECT for the diagnosis of liver hemangioma.

The Quantitative Assessment of Renal Function and Size by Differences of Acquisition Counts in $^{99m}Tc$-DMSA Renal Scan ($^{99m}Tc$-DMSA 신장검사에서 획득 계수의 차이에 따른 기능 및 형태 평가)

  • Shim, Dong-Oh;Kim, Ho-Sung;Chung, Eun-Mi
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.117-121
    • /
    • 2010
  • Purpose: In nuclear medicine study, there are two methods, preset count method and preset time method, to acquire static images. We usually use preset count method for static image in $^{99m}Tc$-DMSA renal scan, but occasionally use preset time method. In case of using preset count method, we always acquire same counts but it causes a difference of scan time. In case of using preset time method, it takes same scan time to acquire images but it causes different counts. Therefore, the purpose of this study is to investigate any differences of function and formal information in both kidney by acquisition counts Materials and Methods: From January 11, 2010 to March 31, 2010, we analyzed the 30 patients (M: 11, W: 19). who were examined by $^{99m}Tc$-DMSA scan and have one side of functioning kidney relatively between 40~60%. And the patients who have cold and hot region in image were analyzed but we did not accept images of patients when it was hard to divide kidney into cortex. There was no division between subjects and age of subjects is $14.83{\pm}22.07$ old. We used the BrightView gamma camera from PHILIPS. To analyze function and formal of kidney, we used JET stream release 3.0 version from PHILIPS. Using SPSS 12.0 program, we compared descriptive statistics and paired T-test. Images were acquired sequentially in the same parameters, but there are three methods which different from acquisition time and scan time, 100 kcounts, 300 kcounts and 7 minutes method (exceed 300 kcounts). To assess function and formal information of kidney, we measured renal relative function, geometric mean and size of kidney and analyzed each difference. Results: In case of renal relative function in both kidney, 100 kcounts method was $50.52{\pm}3.64%$. 300 kcounts method was $50.38{\pm}3.66%$ and 7 minutes method was $49.91{\pm}3.40%$ and there were no statistical significant differences between each method. In case of geometric mean, 100 kcounts method was $50.08{\pm}3.25%$. 300 kcounts method was $49.89{\pm}3.40%$ and 7 minutes method was $49.91{\pm}3.24%$. And also, there were no statistical significant differences. When comparing size of kidney, 100 kcounts method was $8.23{\pm}1.96$ cm. 300 kcounts method was $8.12{\pm}1.90$ cm and 7 minutes method was $8.35{\pm}1.97$ cm. In case of right kidney, 100 kcounts method was $7.91{\pm}1.88$ cm. 300 kcounts method was $8.12{\pm}1.90$ cm and 7 minutes method was $8.25{\pm}1.96$ cm. From those values, we recognized that there were significant differences each method (p<0.05). Conclusion: From results of this study, there were no statistical differences in renal relative function and geometric mean by acquisition counts. However, in shape of kidney, the more acquisition counts are increasing, the more size of kidney is getting big. And there were statistical significant differences. Therefore, to perform reliable quantitative result, preset count method is more desirable than preset time method. Especially, in case of a follow-up test, if we use preset time method, it will cause differences of formal results in kidney due to acquisition counts each time we examine patients.

  • PDF

Comparison of Activity Capacity Change and GFR Value Change According to Matrix Size during 99mTc-DTPA Renal Dynamic Scan (99mTc-DTPA 신장 동적 검사(Renal Dynamic Scan) 시 동위원소 용량 변화와 Matrix Size 변경에 따른 사구체 여과율(Glomerular Filtration Rate, GFR) 수치 변화 비교)

  • Kim, Hyeon;Do, Yong-Ho;Kim, Jae-Il;Choi, Hyeon-Jun;Woo, Jae-Ryong;Bak, Chan-Rok;Ha, Tae-Hwan
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.24 no.1
    • /
    • pp.27-32
    • /
    • 2020
  • Purpose Glomerular Filtration Rate(GFR) is an important indicator for evaluating renal function and monitoring the progress of renal disease. Currently, the method of measuring GFR in clinical trials by using serum creatinine value and 99mTc-DTPA(diethylenetriamine pentaacetic acid) renal dynamic scan is still useful. After the Gates method of formula was announced, when 99mTc-DTPA Renal dynamic scan is taken, it is applied the GFR is measured using a gamma camera. The purpose of this paper is to measure the GFR by applying the Gates method of formula. It is according to effect activity and matrix size that is related in the GFR. Materials and Methods Data from 5 adult patients (patient age = 62 ± 5, 3 males, 2 females) who had been examined 99mTc-DTPA Renal dynamic scan were analyzed. A dynamic image was obtained for 21 minutes after instantaneous injection of 99mTc-DTPA 15 mCi into the patient's vein. To evaluate the glomerular filtration rate according to changes in activity and matrix size, total counts were measured after setting regions of interest in both kidneys and tissues in 2-3 minutes. The distance from detector to the table was maintained at 30cm, and the capacity of the pre-syringe (PR) was set to 15, 20, 25, 30 mCi, and each the capacity of post-syringe (PO) was 1, 5, 10, 15 mCi is set to evaluate the activity change. And then, each matrix size was changed to 32 × 32, 64 × 64, 128 × 128, 256 × 256, 512 × 512, and 1024 × 1024 to compare and to evaluate the values. Results As the activity increased in matrix size, the difference in GFR gradually decreased from 52.95% at the maximum to 16.67% at the minimum. The GFR value according to the change of matrix size was similar to 2.4%, 0.2%, 0.2% of difference when changing from 128 to 256, 256 to 512, and 512 to 1024, but 54.3% of difference when changing from 32 to 64 and 39.43% of difference when changing from 64 to 128. Finally, based on the presently used protocol, 256 × 256, PR 15 mCi and PO 1 mCi, the GFR value was the largest difference with 82% in PR 15 mCi and PO 1 mCi. conditions, and at the least difference is 0.2% in the conditions of PR 30 mCi and PO 15 mCi. Conclusion Through this paper, it was confirmed that when measuring the GFR using the gate method in the 99mTc-DTPA renal dynamic scan. The GFR was affected by activity and matrix size changes. Therefore, it is considered that when taking the 99mTc-DTPA renal dynamic scan, is should be careful by applying appropriate parameters when calculating GFR in the every hospital.