• Title/Summary/Keyword: Gamma Survey Meter

Search Result 15, Processing Time 0.021 seconds

Beta Gamma Survey Meter (베타 및 감마선 계측용 서어베이 미터)

  • 박인용;이병선
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 1971
  • A survey meter which is used a G-M counter sensitive to beta and gamma radiation is studied. This device is completely transistorized, operated with battery, and can be read directly the 3 full-scale meter range: 2.5, 25 and 250 MR/HR respectively. The collector-coupled monostabel multivibrator consisting of a counting-rate meter circuit, and the astable blocking oscillator consisting of a dc-de converter for power supply are analyzed and derived the design dquations. To improve the resolving time of the G-M counter the device is designed to be triggered by low pulse in the order of 0.5v.

  • PDF

Development of Neutron Induced Prompt γ-ray Spectroscopy System Using 252Cf (252Cf 선원을 이용한 즉발감마선 계측시스템 구성)

  • Park, Yong-Joon;Song, Byung-Chul;Jee, Kwang-Yong
    • Analytical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.12-24
    • /
    • 2003
  • For the design and set-up of neutron induced prompt ${\gamma}$-ray spectroscopy system using $^{252}Cf$ neutron source, the effects of shielding and moderator materials have been examined. The $^{252}Cf$ source being used for TLD badge calibration in Korea Atomic Energy Research Institute was utilized for this preliminary experiment. The ${\gamma}$-ray background and prompt ${\gamma}$-ray spectrum of the sample containing Cl were measured using HPGe (GMX 60% relative efficiency) located at the inside of the system connected to notebook PC at the outside of the system (about 20 meter distance). The background activities of neutron and ${\gamma}$-rays were measured with neutron survey meter as well as ${\gamma}$-ray survey meters, respectively and the system was designed to minimize the activities. Prompt ${\gamma}$-ray spectrum was measured using ${\gamma}$-${\gamma}$ coincident system for reduce the background and the continuum spectrum. The optimum system was designed and set up using the experimental data obtained.

A study on Classification of Temporarily Access Group about Sanitation Workers in Nuclear Medicine Department (핵의학과 환경미화원의 일시 출입자 분류에 대한 고찰)

  • Yoo, Jae-Sook;Jang, Jeong-Chan;Kim, Ho-Seong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.50-56
    • /
    • 2012
  • Purpose: Those who access to the nuclear medicine department are classified as radiation workers, temporarily access group, and occasional access group as defined by the atomic energy law. The radiation workers and temporarily access people wear a personal radiation dosimeter for checking their own radiation absorbed dose periodically. However, because of the sanitation workers, classified as temporarily access group, who are working in the nuclear medicine department are moved in a cycle with other departments and their works are changeful, it is hard to control their radiation absorbed dose. Thus, this study is going to examine the state of the sanitation worker's radiation absorbed dose, and then make sure whether they are classified as temporarily access group or not. Materials and methods: In the first instance, the first sanitation worker who works in vitro laboratory and PET room and the second sanitation worker who works in gamma camera rooms (invivo room) wore radiation dosimeter-OSL(Optically Stimulated Luminescence)- to measure their own radiation absorbed dose during work time from May to June 2011. Secondly, this study was taken place 5 places in gamma camera rooms, 2 places in PET bed room, operating room, waiting room and cyclotron room in PET and 4 places in vitro laboratory. And then to measure the radiation space dose rate, it is measured 10 times each of places as sanitation worker's work flow by using radiation survey meter. Results: The radiation absorbed dose on OSL of the first c who works in vitro laboratory and PET room and the second one who works in gamma camera rooms are 0.04, 0.02 mSv per month respectively. That means the estimated annual radiation absorbed doses are less than 1mSv as 0.48, 0.24 mSv/yr respectively. The radiation space dose rates as sanitation worker's work flow using survey meter are 0.0037, 0.0019 mSv/day, so the estimated annual radiation absorbed dose are 0.93, 0.47 mSv/yr respectively. The weighted exposure dose of first sanitation worker of each places are 1.62% in cyclotron room, 3.88% in waiting room, 2.39% in operating room, 81.01% in bed room of PET and 11.01% in vitro laboratory. The weighted exposure dose of second sanitation worker of each places are 45.22% in radiopharmaceutical laboratory, gamma 30.64% in camera rooms, 15.65% in waiting room, 8.49% in reading room. Conclusion: The annual radiation absorbed doses on OSL of both sanitation workers are less than 1 mSv per year and the annual radiation absorbed doses by using survey meter are less than 1mSv either, but close up to 1 mSv. Thus, to clarify whether the sanitation workers are temporarily access group or not, and to be lessen their s radiation absorbed dose, they should be educated about management of radiation and modified their work flow or work time appropriately, their radiation absorbed dose would be lessen certainly.

  • PDF

Development of a Computation Program for Automatic Processing of Calibration Data of Radiation Instrument (방사선 측정기 교정 데이터의 자동처리를 위한 전산프로그램 개발)

  • Jang, Ji-Woon;Shin, Hee-Sung;Youn, Cheung;Lee, Yun-Hee;Kim, Ho-Dong;Jung, Ki-Jung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.4
    • /
    • pp.246-254
    • /
    • 2006
  • A computation program has been developed for automatic data processing in the calibration process of gamma survey meter. The automatic processing program has been developed based on Visual Basic. The program has been coded according to steps of calibration procedure. The OLE(object linking an embedding) Excel automation method fur automatic data processing is used in this program, which is a kind of programming technique for the Excel control. The performance test on the basis of reference data has been carried out by using the developed program. In the results of performance test, the values of calibration factors and uncertainties by the developed program were equal to those obtained from the reference data. In addition, It was revealed that the efficiency and precision of working are significantly increased by using the developed program.

The Evaluation of External Radiation Exposure dose rate for Radium-223 Dichloride (Radium-223 Dichloride의 외부 방사선량의 평가)

  • Cho, Seong Wook;Yoon, Seok Hwan;Seung, Jong Min;Kim, Tae Yub;Im, Jeong Jin;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.1
    • /
    • pp.28-31
    • /
    • 2016
  • Purpose $^{223}Ra-Dichloride$ is used for the medicine of castration-resistant prostate cancer (CRPC) and which emits ${\alpha}-ray$ of 28 Mev that is used for therapy. However $^{223}Ra-Dichloride$ emits ${\beta}-ray$ of 3.6% and ${\gamma}-ray$ of 1.1%(80,156,270 keV) aside from ${\alpha}-ray$ in decay. Therefore we would like to evaluate external radiation expose dose rate of ${\gamma}-ray$ of $^{223}Ra-Dichloride$. Materials and Methods We calculated external radiation expose dose rate using ${\gamma}-constant$ of $^{223}Ra-Dichloride$, $^{99m}Tc$ based on Health physics(2012). $^{223}Ra-Dichloride$ of 3.5 MBq and $^{99m}Tc-MDP$ of 740 MBq were applied. external radiation expose dose rate 15 times from 1m by survey meter. Results ${\gamma}-contant$ of $^{223}Ra$, $^{99m}Tc-MDP$ from 1m distance based on Health physics(2012) is 0.0469, 0.0215. calculated value of external radiation expose dose rate was $16{\mu}Sy$, $34{\mu}Sy$ which activity is $^{223}Ra-Dichloride$ of 3.5 MBq and $^{99m}Tc-MDP$ of 740 MBq from 1 m and measured mean value of 1 m was $0.7{\mu}Sy/h$, $18{\mu}Sy/h$. Conclusion ${\gamma}-constant$ of $^{223}Ra$ is higher than $^{99m}Tc$ based on Health physics(2012). however calculated maximum external radiation expose dose rate of $^{223}Ra-Dichloride$ is lower than $^{99m}Tc$ due to actually used quantity of activity of $^{223}Ra-Dichloride$ is small. measured value of $^{223}Ra-Dichloride$ is also lower than $^{99m}Tc-MDP$. Therefore external radiation expose dose rate of ${\gamma}-ray$ of $^{223}Ra-Dichloride$ is very low.

  • PDF

A Study on the Evaluation of Radiation Safety in Opened-Ceiling-Facilities for Radiography Testing (천장 개방형 RT 사용시설의 방사선 안전성 평가 연구)

  • Sung-Hoe, Heo;Won-Seok, Park;Seung-Uk, Heo;Byung-In, Min
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.741-749
    • /
    • 2022
  • Radiography-Testing that verify the quality of welding structures without destruction are overwhelmingly used in industries, but many safety precautions are required as radiation is used. The workers for Radiography-Testing perform the inspection by moving the Iridium-192 radiation source embedded in the transport container of the gamma-ray irradiator within or outside the facility. The general facility is completely blocked about radiation from the outside with thick concrete, but if it is difficult for worker to handle object of inspection, facilities ceiling can be opened. A general facility may be constructed using a theoretical dose evaluation method because all exterior facilities are blocked, but if the ceiling is open, it is not appropriate to evaluate radiation safety with a simple theoretical calculation method due to the skyshine effect. Therefore, in this study, the radiation safety of the facility was evaluated in the actual field through an ion chamber survey-meter and an accumulated dose-meter called as OSLD, and the actual evaluation environment was modeled and evaluated using the Monte Carlo simulation code as FLUKA. According to the direction of the irradiation, the radiation dose at the facility boundary was difficult to meet the standards set by the regulatory authority, and radiation safety could be secured through additional methods. In addition, it was confirmed that the simulation results using the Iridium-192 source were valid evaluation with the actual measured results.

A Study on Medical Waste Contaminated by Radioactivity in Nuclear Medicine Department (핵의학과 일반 의료폐기물에서의 방사능 오염에 관한 고찰)

  • Yoo, Jae-Sook;Jang, Jung-Chan;Lee, Dong-Hoon;Cha, Min-Kyeong;Nam, Ki-Pyo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.70-74
    • /
    • 2011
  • Purpose: In the Nuclear Medicine department of Asan Medical Center, radioactive waste has been disposed of by using several disposal boxes designed for nuclear waste. However, some quantity of radioactivity has been detected occasionally due to some radiologists' carelessness not only from radioactive waste, but also from medical waste such as uncontrolled radioactive waste related to patients, poly gloves or saline solution bottles from radiopharmaceuticals laboratory. Thus, this study is going to suggest a solution to maintain the medical wastes made from controlled areas that can be below maximum permissible surface dose limits by finding the cause of radioactive contamination. Materials and methods: This study was taken place in 17 different places-2 medical wastebaskets in the waiting room, 2 medical wastebaskets in the PET room, 5 medical wastebaskets in the in vitro laboratory and 6 medical wastebaskets in the radiopharmaceuticals laboratory of the East building, 2 medical wastebaskets in the waiting room of the New building of Nuclear Medicine Department in Asan Medical Center from April to August 2010. Mean radioactivity and its standard deviation of each place have been found by measuring surface contamination of medical wastebaskets and backgrounds twice a week, totaling 30 times. An independent t-test of SPSS (Ver. 12.0) statistic program has been used for statistical analysis. Swabs, saline solution bottles and poly gloves collected from each place also measured 30 times, respectively. Results: This study analyzed medical waste and the backgrounds of each place by using survey meter detectors that significant differences of five places did not exist, but existed statistically in twelve places (p<0.05). Also, swabs, saline solution bottles and poly gloves collected from each radioactive waste partly exceed the legal dose limit as a result of measuring by a gamma counter. Conclusion: Backgrounds and the surface doses of radioactive disposal box in all 17 places measured by the survey meter did not exceed the legal dose limit; however, it obviously showed that there were prominent differences in 12 places. Assuming that the cause of the differences was swabs, saline solution bottles and gloves, we examined them by gamma counter, and the results showed remarkably high doses of radioactivity. Consequently, swabs and poly gloves which are normally disposed in the general medical waste box should be disposed in the radioactive waste box furnished by radiopharmaceuticals laboratory. Also, saline solution discharged from radioactive pharmaceutical places is considered as radioactive liquid waste so that it should be disposed of by the septic tank specifically designed for radioactive liquid.

  • PDF

Improvement of accuracy in radioactivity assessment of medical linear accelerator through self-absorption correction in HPGe detector

  • Suah Yu;Na Hye Kwon;Sang-Rok Kim;Young Jin Won;Kum Bae Kim;Se Byeong Lee;Cheol Ha Baek;Sang Hyoun Choi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2317-2323
    • /
    • 2024
  • Medical linear accelerators with an energy of 8 MV or higher are radiated owing to photonuclear reactions and neutron capture reactions. It is necessary to quantitatively evaluate the concentration of radioactive isotopes when replacing or disposing them. HPGe detectors are commonly used to identify isotopes and measure radioactivity. However, because the detection efficiency is generally calibrated using a standard material with a density of 1.0 g/cm3, a self-absorption effect occurs if the density of the measured material is high. In this study, self-absorption correction factors were calculated for tungsten, lead, copper, and SUS-303, which are the main materials of medical linear accelerator head parts, for each gamma-ray energy using MCNP 6.2 code. The self-absorption effect was more pronounced as the energy of the emitted gamma rays decreased and the density of the measured materials increased. These correction factors were applied to the radioactivity measurements of the in-built and portable HPGe detectors. Furthermore, compared to the surface dose rate measured by the survey meter, the accuracy of the measurements of radioactivity improved by an average of 124.31 and 100.53 % for inbuilt and portable HPGe detectors, respectively. The results showed a good agreement, with an average difference of 3.70 and 5.24 %.

Evaluation on the radiation exposure from activated wedge filter (10MV 이상 고에너지 사용시 wedge filler의 방사화가 작업환경에 미치는 영향평가)

  • Lee HwaJung;Kim DaeYoung;Kim WonTaek;Lee KangHyeok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.2
    • /
    • pp.69-79
    • /
    • 2004
  • In the process of photon treatments, linear accelerators with energies higher than 10 MV produce neutrons through the (${\gamma}$, n) interactions with the composite materials of the linac head md these materials further produce the induced radiations. We investigate the possible risks from these induced radiations especially in the wedge filters to the radiation workers. Wedge filters are used to modify the isodose profiles in the radiation treatment using the linear accelerator and always be handled by the radiation workers. For the background radiation, we measured the radiation in both the waiting room and the outside of the building for two hospitals, S and H. The results of S hospital were $0.11\;{\mu}Sv/hr$ and $0.10\;{\mu}Sv/hr$ for waiting room and outside respectively, and in the case of H hospital, they were $0.12\;{\mu}Sv/hr$ and $0.11\;{\mu}Sv/hr$. Using a survey meter, we measured the radiation from wedge filters inserted in 10 MV and 15 MV Siemens linear accelerators. The time series measurements were done in ${\sim}1$ minutes after exposure of 5 Gy of monitor units for the field size of $25{\times}25cm^2$. The starting value of 10 MV machine was about $3.26\;{\mu}Sv/hr$, which was three times higher than that of 10 MV. The measured radiation was from $^{28}Al$ and $^{53}Fe$ with a half life of 3.5 min. If the treatment patients are $20{\sim}50$ per day and the number of process of wedge filter change per patient is one or two, the annual dose equivalent is $0.08{\sim}0.4\;mSv$ for 10 MV, and $0.27{\sim}1.36\;mSv$ for 15 MV, which are in the range of dose equivalent limits of radiation workers.

  • PDF

Evaluation of the Decontamination Efficiency of Radioactive Wastes Generated during the Production of 201Tl (201Tl의 생산과정에서 발생한 방사성 폐기물의 제염 효율 평가)

  • Heo, Jae-Seung;Kim, Sang-Rok;Kim, Gi-Sub;Ahn, Yun-jin;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.44 no.5
    • /
    • pp.481-487
    • /
    • 2021
  • This study was conducted for the purpose of efficient radioactive waste disposal and management. Experiment was evaluated the decontamination efficiencies of the four types decontamination materials(Water, Alcohol, Decontamination Water, Decontamination Gel) with radioactive wastes generated during radio-pharmaceutical production process at Korea Institute Radiological and Medical Sciences(KIRAMS). The radioactive waste sample used in experiment is a lead plate of the fume hood that was disposed in April, 2019. In the experimental method, radioactive waste was measured before and after decontamination using a HPGe semiconductor detector and Gamma survey meter. The measured values before and after decontamination were evaluated for decontamination efficiency as a percentage. As a result, it was confirmed that a lot of specific activity and surface dose rate was removed from the radioactive wastes. In particular, when decontamination water was used, most of the radioactivity of radioactive wastes was removed. Considering these results, if decontamination water is used in decontamination of radioactive waste, decontamination efficiency equivalent to the disposition criteria can be expected with just one decontamination treatment. In addition, in the case of water and alcohol, only on decontamination was effective in approximately 75% and 95%. Otherwise, when decontamination gel was used, it was confirmed that the largest deviation occurred among all experimental results.