• Title/Summary/Keyword: Gametophyte

Search Result 66, Processing Time 0.027 seconds

Unidentified Mycosis of Kelp Saccharina japonica Gametophytes (다시마(Saccharina japonica) 배우체의 미동정 진균증)

  • Jeong, Ha-Na;Oh, Myung-Joo;Choi, Sung-Je;Seo, Jung-Soo;Park, Myoung-Ae;Kim, Wi-Sik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.2
    • /
    • pp.219-221
    • /
    • 2017
  • In 2015, white cottony tufts were observed on gametophytes of the kelp Saccharina japonica. Wet mount and histopathology examination revealed numerous fungal hyphae and mycelium around the gametophytes. The gametophytes surrounded by fungal hyphae were generally round and empty. A specific 610-bp fragment of the internal transcribed spacer (ITS)-5.8S rDNA-ITS gene of fungi was amplified by polymerase chain reaction and the nucleotide sequence showed 100% identity with those of Acremonium sclerotigenum, Acremonium sp. and Ascomycota sp. When fungus-infected gametophytes were mixed with healthy gametophytes, a high transmission rate (100%) resulted. This is the first report of mycosis of gametophytes in Korea.

Unpredictable Reproductive Behavior of Cedrus deodara (Roxb.) G. Don

  • Sharma, Rajesh;Bhondge, Sunil Waman
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.2
    • /
    • pp.113-119
    • /
    • 2016
  • The long lived iteroparous conifers produce male and female gametophyte for hundreds of years once they reach the reproductive stage, however, the production of seed is not frequent. This phenomenon of infrequent seed production in conifers is yet to be understood. An attempt to study this change in cone production in Cedrus deodara of Western Himalayas -a species reported to be mainly monoecious and rarely dioecious has been made. The observations recorded on selected trees of flowering/fruiting stage for four years at four different locations have shown the species to be dioecious with higher percentage of female trees during good seed year but with no definite or predictable pattern of reproduction in the trees. A decline in production of female trees was witnessed at all but one location immediately year after reaching the maximum (good seed year). The phenomenon of seed production has been observed to be cyclic and site specific. A change in the sexual behavior of the trees from male to female or vice-versa, male or female turning monoecious or vegetative and vegetative coming to reproductive was unpredictable.

Effects of Environmental Factors on the Growth of Gametophytes and Young Sporophytes of Eisenia bicyclis (Kjellman) Setchell (대황(Eisenia bicyclis) 배우체와 아포체의 생장에 미치는 환경 인자의 영향)

  • Lee, Min-Jeong;Kim, Nam-Gil
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.115-122
    • /
    • 2020
  • Eisenia bicyclis, a perennial macroalga is a primary producer of in the ocean, It has been identified as a key species that plays a vital role in maintaining the ecosystem stability. Also, it is an important target in marine afforestation projects and useful marine organisms. In addition, E. bicyclis is used as a health food for humans. This study investigated the effect of water temperature, light (photon irradiance), and duration of light (photoperiod) on the growth of gametophytes and young sporophytes of E. bicyclis. The germination and growth of the zoospores of E. bicyclis were examined at five temperatures (5℃, 10℃, 15℃, 20℃ and 25℃), four intensities of photon irradiance (10, 20, 40, and 80 μmol m-2s-1), and photoperiods (14:10 and 10:14 light/dark cycles). The zoospores released from mature plant germinated into the gametophytes under all experimental conditions. The gametophytes were able to grow at water temperature 5℃-25℃ and mature at 10℃-20℃. The optimal range of water temperature for the maturation of the gametophyte was 15℃-20℃. At 25℃, E. bicyclis gametophytes grew rapidly but did not mature. The optimal culture conditions for the growth of young sporophytes grew slowly in low temperature and photon irradiances.

Effects of Temperature and Light Intensity on the Early Growth of Tetrasporophytes and Gametophytes of Agarophyton vermiculophyllum (꼬시래기의 사분포자체와 배우체의 초기 생장에 대한 온도와 광도의 영향)

  • Lee, Sang Yong;Choi, Han Gil
    • Ocean and Polar Research
    • /
    • v.42 no.2
    • /
    • pp.133-139
    • /
    • 2020
  • The aim of this study is to examine the physiological characteristics of an agarophyte Agarophyton vermiculophyllum (Ohmi) Gurgel, J.N. Norris et Fredericq in the early life stage of tetrasporophytes (2n) and gametophytes (n) to select appropriate seedlings for mariculture. Growth experiments were carried out at the combinations of four temperatures (20, 25, 30, and 35℃) and three light intensity levels (20, 60, and 100 µmol photons m-2 s-1) in the two ontogenetic stages: discoid holdfasts and erect sporelings. Holdfast areas and sporeling lengths of tetrasporophytes and gametophytes were estimated after 14 days in culture. Relative growth rates (RGRs) for holdfast areas were 7.08-28.38% day-1 for tetrasporophytes and 11.58-23.67% day-1 for gametophytes. At 35℃, holdfasts of tetrasporophytes survived with RGRs of 7.08-23.28% day-1 but those of gametophytes died. Maximal holdfast growth of tetrasporophytes occurred at 30℃ and 100 µmol photons m-2 s-1, which were different from gametophytes (25℃ and 100 µmol photons m-2 s-1). RGRs of tetrasporophytic sporelings were 2.93-11.11% day-1 and were between 0.78-10.82% day-1 for gametophytes. Maximal growth of A. vermiculophyllum sporelings occurred at 25℃ and 60 µmol photons m-2 s-1 for tetrasporophytes, and at 20℃ and 100 µmol photons m-2 s-1 for gametophytes. In conclusion, the present results indicate that carpospores could be used as resources of spore-seedling methods having genetic diversity for mass field cultivation because tetrasporophytes showed higher-temperature tolerance and faster-growing ability than gametophytes of A. vermiculophyllum in the discoid holdfast and sporeling stages.

Gametophytic Abortion in Heterozygotes but Not in Homozygotes: Implied Chromosome Rearrangement during T-DNA Insertion at the ASF1 Locus in Arabidopsis

  • Min, Yunsook;Frost, Jennifer M.;Choi, Yeonhee
    • Molecules and Cells
    • /
    • v.43 no.5
    • /
    • pp.448-458
    • /
    • 2020
  • T-DNA insertional mutations in Arabidopsis genes have conferred huge benefits to the research community, greatly facilitating gene function analyses. However, the insertion process can cause chromosomal rearrangements. Here, we show an example of a likely rearrangement following T-DNA insertion in the Anti-Silencing Function 1B (ASF1B) gene locus on Arabidopsis chromosome 5, so that the phenotype was not relevant to the gene of interest, ASF1B. ASF1 is a histone H3/H4 chaperone involved in chromatin remodeling in the sporophyte and during reproduction. Plants that were homozygous for mutant alleles asf1a or asf1b were developmentally normal. However, following self-fertilization of double heterozygotes (ASF1A/asf1a ASF1B/asf1b, hereafter AaBb), defects were visible in both male and female gametes. Half of the AaBb and aaBb ovules displayed arrested embryo sacs with functional megaspore identity. Similarly, half of the AaBb and aaBb pollen grains showed centromere defects, resulting in pollen abortion at the bi-cellular stage of the male gametophyte. However, inheritance of the mutant allele in a given gamete did not solely determine the abortion phenotype. Introducing functional ASF1B failed to rescue the AaBb- and aaBb-mediated abortion, suggesting that heterozygosity in the ASF1B gene causes gametophytic defects, rather than the loss of ASF1. The presence of reproductive defects in heterozygous mutants but not in homozygotes, and the characteristic all-or-nothing pollen viability within tetrads, were both indicative of commonly-observed T-DNA-mediated translocation activity for this allele. Our observations reinforce the importance of complementation tests in assigning gene function using reverse genetics.

Interactive Effects of Increased Temperature and pCO2 Concentration on the Growth of a Brown Algae Ecklonia cava in the Sporophyte and Gametophyte Stages (갈조류 감태(Ecklonia cava)의 포자체와 배우체 생장에 영향을 주는 수온과 pCO2 농도의 상호작용)

  • Oh, Ji Chul;Yu, Ok Hwan;Choi, Han Gil
    • Ocean and Polar Research
    • /
    • v.37 no.3
    • /
    • pp.201-209
    • /
    • 2015
  • To examine the effects of increased $CO_2$ concentration and seawater temperature on the photosynthesis and growth of forest forming Ecklonia cava (Laminariales, Phaeophyta), sporophytic discs and gametophytes were cultured under three $pCO_2$ concentrations (380, 750, 1000 ppm), four temperatures (5, 10, 15, $20^{\circ}C$ for sporophytes; 10, 15, 20, $25^{\circ}C$ for gametophytes), and two irradiance levels (40, $80{\mu}mol$ photons $m^{-2}s^{-1}$) for 5 days. Photosynthetic parameter values ($ETR_{max}$, $E_k$, and ${\alpha}$) were generally higher as sporophytic discs were grown under low temperature and increased $CO_2$ concentration at 750 ppm. However, photosynthesis of Ecklonia sporophytes was severely inhibited under a combination of high temperature ($20^{\circ}C$) and 1000 ppm $CO_2$ concentration at the two photon irradiance levels. The growth of gametophytes was maximal at the combination of 380 ppm (present seawater $CO_2$ concentration) and $25^{\circ}C$. Minimal growth of gametophytes occurred at enriched $pCO_2$ concentration levels (750, 1000 ppm) and high temperature of $25^{\circ}C$. The present results imply that climate change which is increasing seawater temperature and $pCO_2$ concentration might diminish Ecklonia cava kelp beds because of a reduction in recruitments caused by the growth inhibition of gametophytes at high $pCO_2$ concentration. In addition, the effects of increased temperature and $pCO_2$ concentration were different between generations - revealing an enhancement in the photosynthesis of sporophytes and a reduction in the growth of gametophytes.

Efficacy of a DNA Vaccine Carrying Eimeria maxima Gam56 Antigen Gene against Coccidiosis in Chickens

  • Xu, Jinjun;Zhang, Yan;Tao, Jianping
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.2
    • /
    • pp.147-154
    • /
    • 2013
  • To control coccidiosis without using prophylactic medications, a DNA vaccine targeting the gametophyte antigen Gam56 from Eimeria maxima in chickens was constructed, and the immunogenicity and protective effects were evaluated. The ORF of Gam56 gene was cloned into an eukaryotic expression vector pcDNA3.1(zeo)+. Expression of Gam56 protein in COS-7 cells transfected with recombinant plasmid pcDNA-Gam56 was confirmed by indirect immunofluorescence assay. The DNA vaccine was injected intramuscularly to yellow feathered broilers of 1-week old at 3 dosages (25, 50, and $100{\mu}g/chick$). Injection was repeated once 1 week later. One week after the second injection, birds were challenged orally with $5{\times}10^4$ sporulated oocysts of E. maxima, then weighed and killed at day 8 post challenge. Blood samples were collected and examined for specific peripheral blood lymphocyte proliferation activity and serum antibody levels. Compared with control groups, the administration of pcDNA-Gam56 vaccine markedly increased the lymphocyte proliferation activity (P<0.05) at day 7 and 14 after the first immunization. The level of lymphocyte proliferation started to decrease on day 21 after the first immunization. A similar trend was seen in specific antibody levels. Among the 3 pcDNA-Gam56 immunized groups, the median dosage group displayed the highest lymphocyte proliferation and antibody levels (P<0.05). The median dosage group had the greatest relative body weight gain (89.7%), and the greatest oocyst shedding reduction (53.7%). These results indicate that median dosage of DNA vaccine had good immunogenicity and immune protection effects, and may be used in field applications for coccidiosis control.

Overexpression of the Small Heat Shock Protein, PtsHSP19.3 from Marine Red Algae, Pyropia tenera (Bangiales, Rhodophyta) Enhances Abiotic Stress Tolerance in Chlamydomonas

  • Jin, Yujin;Yang, Sungwhan;Im, Sungoh;Jeong, Won-Joong;Park, EunJeong;Choi, Dong-Woog
    • Journal of Plant Biotechnology
    • /
    • v.44 no.3
    • /
    • pp.287-295
    • /
    • 2017
  • Water temperature is one of the major factors that impacts the growth and life cycle of Pyropia tenera, one of the most valuable and cultivated marine red algae belonging to Bangiales (Rhodophytes). We analyzed transcriptome from gametophyte of P. tenera under normal and high temperature conditions, and identified four small heat shock proteins (sHSPs). They have no significant amino acid sequence homology with known proteins in public databases except PhsHSP22 from Pyropia haitanensis. PtsHSP19.3 gene responded to high temperature but slightly or not to desiccation, freezing or high salt condition. When the PtsHSP19.3 gene was overexpressed in Chlamydomonas reinhardtii, transformed Chlamydomonas lines revealed much higher growth rate than that of control cells under heat stress condition. Transformed cells also grew well in those of the control cell onto the medium containing high salt or $H_2O_2$. When the PtsHSP19.3 was fused to GFP and introduced into tobacco protoplast, fluorescence was detected at several spots. Results indicate that PtsHSP19.3 may form super-molecular assembles and be involved in tolerance to heat stress.

Studies on the abnormality of embryo sac Formation of Forsythia (개나리의 배낭형성이상(胚囊形成異常)에 관(關)하여)

  • Han, Chang Yawl;Kim, Chi Moon
    • Journal of Korean Society of Forest Science
    • /
    • v.3 no.1
    • /
    • pp.1-4
    • /
    • 1963
  • Present experiment has been carried out in order to make clear the abnormalities of the female gametophyte formation and its relation to fertility, using the short-style of F. koreana, the results of which are summarized as follows : (1) Anatropous ovule has single integument with thick cell-layer and tiny nucellus consisting of nucella-epidermis and megaspore mother cell. (2) Meiotic division of megaspore mother cell takes place around middle or latter part of March, while that of microspore mother cell occurs from the end of September to the beginning of October. (3) Megaspore mother cell stage is long, and ranges from October to March next year. (4) Formation of mature embryo sac is not completed until the beginning of May, approximately one month after blooming. (5) Normal embryo sac is rare, most of the nucellus being devoid of embryo sac.

  • PDF

Spore Morphology of Some Ophioglossaceous Species (고사리삼과 식물 수 종의 포자 형태)

  • 선병윤
    • Journal of Plant Biology
    • /
    • v.37 no.1
    • /
    • pp.43-51
    • /
    • 1994
  • Spore morphology of 14 species of Ophioglossaceae is examined, and descriptions and key based on spore morphology are provided. In addition, spores of one species of Angiopteris and three species of Osmunda are examined for comparision with those of Ophioglossaceae. Spore shape at proximal face is sub triangular or triquete in Botrychium and circular in Ophiog~ lossum, Angiopteris and Osmunda. Based on the wall sculpturing patterns, three groups can be recognized within Botrychium, and the differences of wall sculpturing among these groups are smaller as compared to those among Botrychium, Ophioglossum, Osmunda and Angiopteris. This result supports the previous infrafamilial system of Clausen, which was mainly based on the characteristics of vernation, habit, fertile and sterile segments of the leaf, and gametophyte. Spores of nine species of Ophioglossum, which are circular in proximal face and fossulate or foveolate in wall sculpturing, are quite uniform as compared to those of Botrychium. Therefore they should be kept under a single genus rather than split into four genera suggested by Nishida (1952).(1952).

  • PDF