• Title/Summary/Keyword: Gallium alloy

Search Result 13, Processing Time 0.02 seconds

Effect of Boron Content and Temperature on Interactions and Electron Transport in BGaN Bulk Ternary Nitride Semiconductors

  • Bouchefra, Yasmina;Sari, Nasr-Eddine Chabane
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • This work takes place in the context of the development of a transport phenomena simulation based on group III nitrides. Gallium and boron nitrides (GaN and BN) are both materials with interesting physical properties; they have a direct band gap and are relatively large compared to other semiconductors. The main objective of this paper is to study the effect of boron content on the electron transport of the ternary compound $B_xGa_{(1-x)}N$ and the effect of the temperature of this alloy at x=50% boron percentage, specifically the piezoelectric, acoustic, and polar optical scatterings as a function of the energy, and the electron energy and drift velocity versus the applied electric field for different boron compositions ($B_xGa_{(1-x)}N$), at various temperatures for $B_{0.5}Ga_{0.5}N$. Monte carlo simulation, was employed and the three valleys of the conduction band (${\Gamma}$, L, X) were considered to be non-parabolic. We focus on the interactions that do not significantly affect the behavior of the electron. Nevertheless, they are introduced to obtain a quantitative description of the electronic dynamics. We find that the form of the velocity-field characteristic changes substantially when the temperature is increased, and a remarkable effect is observed from the boron content in $B_xGa_{(1-x)}N$ alloy and the applied field on the dynamics of holders within the lattice as a result of interaction mechanisms.

Simple Route to High-performance and Solution-processed ZnO Thin Film Transistors Using Alkali Metal Doping

  • Kim, Yeon-Sang;Park, Si-Yun;Kim, Gyeong-Jun;Im, Geon-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.187-187
    • /
    • 2012
  • Solution-processed metal-alloy oxides such as indium zinc oxide (IZO), indium gallium zinc oxide (IGZO) has been extensively researched due to their high electron mobility, environmental stability, optical transparency, and solution-processibility. In spite of their excellent material properties, however, there remains a challenging problem for utilizing IZO or IGZO in electronic devices: the supply shortage of indium (In). The cost of indium is high, what is more, indium is becoming more expensive and scarce and thus strategically important. Therefore, developing an alternative route to improve carrier mobility of solution-processable ZnO is critical and essential. Here, we introduce a simple route to achieve high-performance and low-temperature solution-processed ZnO thin film transistors (TFTs) by employing alkali-metal doping such as Li, Na, K or Rb. Li-doped ZnO TFTs exhibited excellent device performance with a field-effect mobility of $7.3cm^2{\cdot}V-1{\cdot}s-1$ and an on/off current ratio of more than 107. Also, in case of higher drain voltage operation (VD=60V), the field effect mobility increased up to $11.45cm^2{\cdot}V-1{\cdot}s-1$. These all alkali metal doped ZnO TFTs were fabricated at maximum process temperature as low as $300^{\circ}C$. Moreover, low-voltage operating ZnO TFTs was fabricated with the ion gel gate dielectrics. The ultra high capacitance of the ion gel gate dielectrics allowed high on-current operation at low voltage. These devices also showed excellent operational stability.

  • PDF

Bandgap Control of (AlxGa1-x)2O3 Epilayers by Controlling Aqueous Precursor Mixing Ratio in Mist Chemical Vapor Deposition System (미스트화학기상증착시스템의 전구체 수용액 혼합비 조절을 통한 (AlxGa1-x)2O3 에피박막의 밴드갭 특성 제어 연구)

  • Kim, Kyoung-Ho;Shin, Yun-Ji;Jeong, Seong-Min;Bae, Si-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.528-533
    • /
    • 2019
  • We investigated the growth of $(Al_xGa_{1-x})_2O_3$ thin films on c-plane sapphire substrates that were grown by mist chemical vapor deposition (mist CVD). The precursor solution was prepared by mixing and dissolving source materials such as gallium acetylacetonate and aluminum acetylacetonate in deionized water. The [Al]/[Ga] mixing ratio (MR) of the precursor solution was adjusted in the range of 0~4.0. The Al contents of $(Al_xGa_{1-x})_2O_3$ thin films were increased from 8 to 13% with the increase of the MR of Al. As a result, the optical bandgap of the grown thin films changed from 5.18 to 5.38 eV. Therefore, it was determined that the optical bandgap of grown $(Al_xGa_{1-x})_2O_3$ thin films could be effectively engineered by controlling Al content.