DOI QR코드

DOI QR Code

Bandgap Control of (AlxGa1-x)2O3 Epilayers by Controlling Aqueous Precursor Mixing Ratio in Mist Chemical Vapor Deposition System

미스트화학기상증착시스템의 전구체 수용액 혼합비 조절을 통한 (AlxGa1-x)2O3 에피박막의 밴드갭 특성 제어 연구

  • Kim, Kyoung-Ho (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Yun-Ji (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Seong-Min (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Bae, Si-Young (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology)
  • 김경호 (한국세라믹기술원 에너지환경본부) ;
  • 신윤지 (한국세라믹기술원 에너지환경본부) ;
  • 정성민 (한국세라믹기술원 에너지환경본부) ;
  • 배시영 (한국세라믹기술원 에너지환경본부)
  • Received : 2019.09.21
  • Accepted : 2019.10.11
  • Published : 2019.11.01

Abstract

We investigated the growth of $(Al_xGa_{1-x})_2O_3$ thin films on c-plane sapphire substrates that were grown by mist chemical vapor deposition (mist CVD). The precursor solution was prepared by mixing and dissolving source materials such as gallium acetylacetonate and aluminum acetylacetonate in deionized water. The [Al]/[Ga] mixing ratio (MR) of the precursor solution was adjusted in the range of 0~4.0. The Al contents of $(Al_xGa_{1-x})_2O_3$ thin films were increased from 8 to 13% with the increase of the MR of Al. As a result, the optical bandgap of the grown thin films changed from 5.18 to 5.38 eV. Therefore, it was determined that the optical bandgap of grown $(Al_xGa_{1-x})_2O_3$ thin films could be effectively engineered by controlling Al content.

Keywords

References

  1. J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R.C.N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, Adv. Electron. Mater., 4, 1600501 (2017). [DOI: https://doi.org/10.1002/aelm.201600501]
  2. Tamura Corporation, Standard Specifications of Gallium Oxide Substrates, https://www.tamura-ss.co.jp/file.jsp?id=13281 (accessed: September 2019).
  3. R. Roy, V. G. Hill, and E. F. Osborn, J. Am. Chem. Soc., 74, 719 (1952). [DOI: https://doi.org/10.1021/ja01123a039]
  4. S. Fujita, M. Oda, K. Kaneko, and T. Hitora, Jpn. J. Appl. Phys., 55, 1202A3 (2016). [DOI: https://doi.org/10.7567/JJAP.55.1202A3]
  5. M. Oda, K. Kaneko, S. Fujita, and T. Hitora, Jpn. J. Appl. Phys., 55, 1202B4 (2016). [DOI: https://doi.org/10.7567/JJAP.55.1202B4]
  6. Q. Feng, X. Li, G. Han, L. Huang, F. Li, W. Tang, J. Zhang, and Y. Hao, Opt. Mater. Express, 7, 1240 (2017). [DOI: https://doi.org/10.1364/OME.7.001240]
  7. T. Oshima, T. Okuno, N. Arai, Y. Kobayashi, and S. Fujita, Jpn. J. Appl. Phys., 48, 070202 (2009). [DOI: https://doi.org/10.1143/JJAP.48.070202]
  8. Y. Oshima, E. G. Villora, and K. Shimamura, Appl. Phys. Express, 8, 055501 (2015). [DOI: https://doi.org/10.7567/APEX.8.055501]
  9. F. Mezzadri, G. Calestani, F. Boschi, D. Delmonte, M. Bosi, and R. Fornari, Inorg. Chem., 55, 12079 (2015). [DOI: https://doi.org/10.1021/acs.inorgchem.6b02244]
  10. K. Kaneko, T. Nomura, and S. Fujita, Physica Status Solidi C, 7, 2467 (2010). [DOI: https://doi.org/10.1002/pssc.200983896]
  11. K. Kaneko, K. Suzuki, Y. Ito, and S. Fujita, J. Cryst. Growth, 436, 150 (2016). [DOI: https://doi.org/10.1016/j.jcrysgro.2015.12.013]
  12. M. T. Ha, K. H. Kim, Y. J. Kwon, C. J. Kim, S. M. Jeong, and S. Y. Bae, ECS J. Solid State Sci. Technol., 8, Q3206 (2019). [DOI: https://doi.org/10.1149/2.0381907jss]
  13. H. Yan and P. Wang, Adv. Mater. Res., 1015, 598 (2014). [DOI: https://doi.org/10.4028/www.scientific.net/AMR.1015.598]
  14. S. Lany, APL Mater., 6, 046103 (2018). [DOI: https://doi.org/10.1063/1.5019938]