DOI QR코드

DOI QR Code

Effect of Boron Content and Temperature on Interactions and Electron Transport in BGaN Bulk Ternary Nitride Semiconductors

  • Bouchefra, Yasmina (Unity of Research Materials and Renewable Energies (URMER), University of Tlemcen) ;
  • Sari, Nasr-Eddine Chabane (Unity of Research Materials and Renewable Energies (URMER), University of Tlemcen)
  • Received : 2016.03.17
  • Accepted : 2016.09.21
  • Published : 2017.02.25

Abstract

This work takes place in the context of the development of a transport phenomena simulation based on group III nitrides. Gallium and boron nitrides (GaN and BN) are both materials with interesting physical properties; they have a direct band gap and are relatively large compared to other semiconductors. The main objective of this paper is to study the effect of boron content on the electron transport of the ternary compound $B_xGa_{(1-x)}N$ and the effect of the temperature of this alloy at x=50% boron percentage, specifically the piezoelectric, acoustic, and polar optical scatterings as a function of the energy, and the electron energy and drift velocity versus the applied electric field for different boron compositions ($B_xGa_{(1-x)}N$), at various temperatures for $B_{0.5}Ga_{0.5}N$. Monte carlo simulation, was employed and the three valleys of the conduction band (${\Gamma}$, L, X) were considered to be non-parabolic. We focus on the interactions that do not significantly affect the behavior of the electron. Nevertheless, they are introduced to obtain a quantitative description of the electronic dynamics. We find that the form of the velocity-field characteristic changes substantially when the temperature is increased, and a remarkable effect is observed from the boron content in $B_xGa_{(1-x)}N$ alloy and the applied field on the dynamics of holders within the lattice as a result of interaction mechanisms.

Keywords

References

  1. S. Nakamura, S. Pearton, and G. Fasol, Blue Laser Diode (Springer, Berlin, 1997). [DOI: http://dx.doi.org/10.1007/ 978-3-662-03462-0]
  2. J . Singh, Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge U. Press, County town, 2003). [DOI: http://dx.doi.org/10.1017/CBO9780511805745]
  3. A. Negol, A. Guyot, and J. Zimmermann, Proc. ASAP 97 (IEEE, Zurich, 1997).
  4. H. Kosina and M. Nedjalkov, Mathematics and Computers in Simulation (Elsevier, 2001) p. 55.
  5. B. Bouazza and et al., Africa Science, 01, 55 (2005).
  6. J. Saint Martin, Ph. D. Thesis, University of South Paris, France (2005).
  7. J. Pozela and A. Reklaitis, Solid-St. Electron., 23, 927 (1980). https://doi.org/10.1016/0038-1101(80)90057-X
  8. P. J. Price, IBM Journal of Research and Development, 17 (1973). [DOI: http://dx.doi.org/10.1147/rd.171.0039]
  9. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Paticles (McGraw-Hill International Book Company, New York, 1981).
  10. C. Jacoboni and P. Lugli, Springer-Verlag (1989).
  11. C. Moglestue, Monte carlo Simulation of Semiconductor Devices (Chapman & Hall, London, 1993).
  12. L. E Ramos, L. K. Teles, L.M.R. Scolfaro, J.L.P. Castineira, A.L.Rosa, and J. R. Leite, Phys. Rev. B, 63, 165210 (2001). [DOI: http://dx.doi.org/10.1103/PhysRevB.63.165210]
  13. Y. N. Xu and W. Y. Ching, Phys. Rev. B, 44, 7787 (1991). [DOI: http://dx.doi.org/10.1103/PhysRevB.44.7787]
  14. S. V. Ordin, B. N. Sharupin, and M. I. Fedorov, Smicond., 32, 924(1998). https://doi.org/10.1134/1.1187516
  15. M. Farahmand, C. Garetto, E. Bellotti, K. F. Brennan, M. Goano, E. Ghillino, G. Ghione, J. D. Albrecht, and P. P. Ruden, IEEE Trans. Elect. Dev., 48, 535 (2001). [DOI: http://dx.doi.org/10.1109/16.906448]
  16. V. Bougrov, M. E. Levinshtein, S. L. Rumyantsev, and A. Zubrilov, in: Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe (eds. M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur) (John Wiley & Sons, Inc., New York, 2001) p. 1-30.
  17. C. Moglestue, Monte carlo Simulation Semiconductor Devices (CHAPMAN & Hall, New York, 1993). [DOI: http://dx.doi.org/10.1007/978-94-015-8133-2]
  18. C. Hamaguchi, Basic Semiconductor Physics, 280 (Springer, 2001).
  19. P. J. Priee, Phys. Rev. B, 30, 2234 (1984).
  20. D. Dolgos, H. Meier, A. Schenk, and B. Witzigmann, J. Appl. Phys., 110, 084507 (2011). [DOI: http://dx.doi. org/10.1063/1.3652844]
  21. A. F. Wright, J. Appl. Phys., 82, 2833 (1997). [DOI: http://dx.doi.org/10.1063/1.366114]
  22. K. Kim, W.R.L. Lambrecht, and B. Segall, Phys. Rev. B, 53, 16310 (1996). [DOI: http://dx.doi.org/10.1103/PhysRevB.53.16310]
  23. F. Nofeli, International Journal of Engineering Research and Applications, 3, 2679 (2013).
  24. R. R. Abadi, M. Indian Journal of Science and Technology, 3, (2010).