• Title/Summary/Keyword: Gallium Oxide

Search Result 196, Processing Time 0.025 seconds

Characteristics of IGZO Thin Film Transistor Deposited by DC Magnetron Sputtering (DC 마그네트론 스퍼터링 방법을 이용하여 증착한 IGZO 박막트랜지스터의 특성)

  • Kim, Sung-Yeon;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.24-27
    • /
    • 2009
  • Indium Gallium Zinc Oxide (IGZO) thin films were deposited onto 300 nm-thick oxidized Si substrates and glass substrates by direct current (DC) magnetron sputtering of IGZO targets at room temperature. FESEM and XRD analyses indicate that non-annealed and annealed IGZO thin films exhibit an amorphous structure. To investigate the effect of an annealing treatment, the films were thermally treated at $300^{\circ}C$ for 1hr in air. The IGZO TFTs structure was a bottom-gate type in which electrodes were deposited by the DC magnetron sputtering of Ti and Au targets at room temperature. The non-annealed and annealed IGZO TFTs exhibit an $I_{on}/I_{off}$ ratio of more than $10^5$. The saturation mobility and threshold voltage of nonannealed IGZO TFTs was $4.92{\times}10^{-1}cm^2/V{\cdot}s$ and 1.46V, respectively, whereas these values for the annealed TFTs were $1.49{\times}10^{-1}cm^2/V{\cdot}$ and 15.43V, respectively. It is believed that an increase in the surface roughness after an annealing treatment degrades the quality of the device. The transmittances of the IGZO thin films were approximately 80%. These results demonstrate that IGZO thin films are suitable for use as transparent thin film transistors (TTFTs).

Comparative Study on Hydrogen Behavior in InGaZnO Thin Film Transistors with a SiO2/SiNx/SiO2 Buffer on Polyimide and Glass Substrates

  • Han, Ki-Lim;Cho, Hyeon-Su;Ok, Kyung-Chul;Oh, Saeroonter;Park, Jin-Seong
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.749-754
    • /
    • 2018
  • Previous studies have reported on the mechanical robustness and chemical stability of flexible amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) on plastic substrates both in flat and curved states. In this study, we investigate how the polyimide (PI) substrate affects hydrogen concentration in the a-IGZO layer, which subsequently influences the device performance and stability under bias-temperature-stress. Hydrogen increases the carrier concentration in the active layer, but it also electrically deactivates intrinsic defects depending on its concentration. The influence of hydrogen varies between the TFTs fabricated on a glass substrate to those on a PI substrate. Hydrogen concentration is 5% lower in devices on a PI substrate after annealing, which increases the hysteresis characteristics from 0.22 to 0.55 V and also the threshold voltage shift under positive bias temperature stress by 2 ${\times}$ compared to the devices on a glass substrate. Hence, the analysis and control of hydrogen flux is crucial to maintaining good device performance and stability of a-IGZO TFTs.

Study on Revision of Minerals HSK Code of Korea (한국의 광산물 HSK Code 개정방안 연구)

  • Lee, Hwa Suk;Kim, Yu Jeong
    • Mineral and Industry
    • /
    • v.27
    • /
    • pp.8-15
    • /
    • 2014
  • In this study, a proposal for revision of HSK Code was established on legally designated minerals and national stockpile minerals. It is difficult to exactly identify trade balances of minerals, such as lithium ore, rare earth ore, serpentine, kidney stone in legally designated minerals and ingot of indium, ferro-tungsten, ingot of antimony, granule of selenium, gallium, lanthanum oxide, cerium carbonate in national stockpile minerals because HSK Codes of them were not allocated separately. Furthermore, specific use, standard, component, type of products cannot be exactly identified in current HSK Code system. Therefore, it is makes rule to separately manage minerals which were managed by government such as legally designated minerals and national stockpile minerals. However, a proposal for revision of HSK Code system was established to comply with international standard(HS Code) and the items over a certain size(amounts : over 50 mil.$, volumes : over 5000 ton) were selected as revised subjects. Moreover hierarchies between HSK Codes were considered.

  • PDF

Properties of Working Electrodes with IGZO layers in a Dye Sensitized Solar Cell

  • Kim, Gunju;Noh, Yunyoung;Choi, Minkyoung;Kim, Kwangbae;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.110-115
    • /
    • 2016
  • We prepared a working electrode (WE) coated with 0 ~ 50 nm-thick indium gallium zinc oxide(IGZO) by using RF sputtering to improve the energy conversion efficiency (ECE) of a dye sensitized solar cell (DSSC). Transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS) were used to analyze the microstructure and composition of the IGZO layer. UV-VIS-NIR spectroscopy was used to determine the transparency of the WE with IGZO layers. A solar simulator and a potentiostat were used to confirm the photovoltaic properties of the DSSC with IGZO layer. From the results of the microstructural analysis, we were able to confirm the successful deposition of an amorphous IGZO layer with the expected thickness and composition. From the UV-VIS-NIR analysis, we were able to verify that the transparency decreased when the thickness of IGZO increased, while the transparency was over 90% for all thicknesses. The photovoltaic results show that the ECE became 4.30% with the IGZO layer compared to 3.93% without the IGZO layer. As the results show that electron mobility increased when an IGZO layer was coated on the $TiO_2$ layer, it is confirmed that the ECE of a DSSC can be enhanced by employing an appropriate thickness of IGZO on the $TiO_2$ layer.

Electrochemical Preparation of Indidum Sulfide Thin Film as a Buffer Layer of CIGS Solar Cell (CIGS 태양전지 버퍼층으로의 활용을 위한 인듐설파이드의 전기화학적 합성)

  • Kim, Hyeon-Jin;Kim, Kyu-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.4
    • /
    • pp.225-230
    • /
    • 2011
  • CIGS solar cells are kind of thin film solar cells, which are studied several years. CdS buffer layer that makes heterojunction between window layer and absorbing layer was one of issue in the CIGS solar cell study. New types of buffer layer consisted of indium sulfide are being studied these days owing to high price and environmental harmful of CdS. In this study, we demonstrated electrochemical synthesis of indium sulfide film as a buffer layer, which is cheaper and faster than other methods. A uniform indium sulfide film was obtained by applying two different alternating potentials. The band gap of the film was optimized by controlling temperature during the electrochemical synthesis. Using x-ray photoelectron spectroscopy and diffraction method we confirmed that ${\beta}$-indium sulfide was formed on ITO electrode surface.

Experimental Investigation of Physical Mechanism for Asymmetrical Degradation in Amorphous InGaZnO Thin-film Transistors under Simultaneous Gate and Drain Bias Stresses

  • Jeong, Chan-Yong;Kim, Hee-Joong;Lee, Jeong-Hwan;Kwon, Hyuck-In
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.239-244
    • /
    • 2017
  • We experimentally investigate the physical mechanism for asymmetrical degradation in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) under simultaneous gate and drain bias stresses. The transfer curves exhibit an asymmetrical negative shift after the application of gate-to-source ($V_{GS}$) and drain-to-source ($V_{DS}$) bias stresses of ($V_{GS}=24V$, $V_{DS}=15.9V$) and ($V_{GS}=22V$, $V_{DS}=20V$), but the asymmetrical degradation is more significant after the bias stress ($V_{GS}$, $V_{DS}$) of (22 V, 20 V) nevertheless the vertical electric field at the source is higher under the bias stress ($V_{GS}$, $V_{DS}$) of (24 V, 15.9 V) than (22 V, 20 V). By using the modified external load resistance method, we extract the source contact resistance ($R_S$) and the voltage drop at $R_S$ ($V_{S,\;drop}$) in the fabricated a-IGZO TFT under both bias stresses. A significantly higher RS and $V_{S,\;drop}$ are extracted under the bias stress ($V_{GS}$, $V_{DS}$) of (22 V, 20V) than (24 V, 15.9 V), which implies that the high horizontal electric field across the source contact due to the large voltage drop at the reverse biased Schottky junction is the dominant physical mechanism causing the asymmetrical degradation of a-IGZO TFTs under simultaneous gate and drain bias stresses.

Study of microwave anneal on solution-processed InZnO-based thin-film transistors with Ga, Hf and Zr carrier suppressors

  • Hong, Jeong-Yun;Lee, Sin-Hye;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.263-263
    • /
    • 2016
  • 최근 반도체 시장에서는 저비용으로 고성능 박막 트랜지스터(TFT)를 제작하기 위한 다양한 기술들이 연구되고 있다. 먼저, 재료적인 측면에서는 비정질 상태에서도 높은 이동도와 가시광선 영역에서 투명한 특성을 가지는 산화물 반도체가 기존의 비정질 실리콘이나 저온 폴리실리콘을 대체하여 차세대 디스플레이의 구동소자용 재료로 많은 주목받고 있다. 또한, 공정적인 측면에서는 기존의 진공장비를 이용하는 PVD나 CVD가 아닌 대기압 상태에서 이루어지는 용액 공정이 저비용 및 대면적화에 유리하고 프리커서의 제조와 박막의 증착이 간단하다는 장점을 가지기 때문에 활발한 연구가 이루어지고 있다. 특히 산화물 반도체 중에서도 indium-gallium-zinc oxide (IGZO)는 비교적 뛰어난 이동도와 안정성을 나타내기 때문에 많은 연구가 진행되고 있지만, 산화물 반도체 기반의 박막 트랜지스터가 가지는 문제점 중의 하나인 문턱전압의 불안정성으로 인하여 상용화에 어려움을 겪고 있다. 따라서, 본 연구에서는 기존의 산화물 반도체의 불안정한 문턱전압의 문제점을 해결하기 위해 마이크로웨이브 열처리를 적용하였다. 또한, 기존의 IGZO에서 suppressor 역할을 하는 값비싼 갈륨(Ga) 대신, 저렴한 지르코늄(Zr)과 하프늄(Hf)을 각각 적용시켜 용액 공정 기반의 Zr-In-Zn-O (ZIZO) 및 Hf-In-Zn-O (HIZO) TFT를 제작하여 시간에 따른 문턱 전압의 변화를 비교 및 분석하였다. TFT 소자는 p-Si 위에 습식산화를 통하여 100 nm 두께의 $SiO_2$가 열적으로 성장된 기판 위에 제작되었다. 표준 RCA 세정을 진행하여 표면의 오염 및 자연 산화막을 제거한 후, Ga, Zr, Hf 각각 suppressor로 사용한 IGZO, ZIZO, HIZO 프리커서를 이용하여 박막을 형성시켰다. 그 후 소스/드레인 전극 형성을 위해 e-beam evaporator를 이용하여 Ti/Al을 5/120 nm의 두께로 증착하였다. 마지막으로, 후속 열처리로써 마이크로웨이브와 퍼니스 열처리를 진행하였다. 그 결과, 기존의 퍼니스 열처리와 비교하여 마이크로웨이브 열처리된 IGZO, ZIZO 및 HIZO 박막 트랜지스터는 모두 뛰어난 안정성을 나타냄을 확인하였다. 결론적으로, 본 연구에서 제안된 마이크로웨이브 열처리된 용액공정 기반의 ZIZO와 HIZO 박막 트랜지스터는 추후 디스플레이 산업에서 IGZO 박막 트랜지스터를 대체할 수 있는 저비용 고성능 트랜지스터로 적용될 것으로 기대된다.

  • PDF

Schottky Barrier Diode Fabricated on Single Crystal β-Ga2O3 Semiconductor (단결정 β-Ga2O3 반도체를 이용한 쇼트키 배리어 다이오드 제작)

  • Kim, Hyun-Seop;Jo, Min-Gi;Cha, Ho-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.21-25
    • /
    • 2017
  • In this study, we have fabricated Schottky barrier diodes (SBD) on single-crystal ${\beta}-Ga_2O_3$ semiconductor that has received much attention for use in next-generation power devices. The SBD had a Pt/Ti/Au Schottky contact on a $2{\mu}m$ Sn-doped low concentration N-type epitaxial layer. The fabricated device exhibited a breakdown voltage of > 180 V, a specific on-resistance of $1.26m{\Omega}{\cdot}cm^2$, and forward current densities of $77A/cm^2$ at 1 V and $473A/cm^2$ at 1.5 V, which proved the potential for use in power device fabrication.

Formation of a thin nitrided GaAs layer

  • Park, Y.J.;Kim, S.I.;Kim, E.K.;Han, I.K.;Min, S.K.;O'Keeffe, P.;Mutoh, H.;Hirose, S.;Hara, K.;Munekata, H.;Kukimoto, H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1996.06a
    • /
    • pp.40-41
    • /
    • 1996
  • Nitridation technique has been receiving much attention for the formation of a thin nitrided buffer layer on which high quality nitride films can be formedl. Particularly, gallium nitride (GaN) has been considered as a promising material for blue-and ultraviolet-emitting devices. It can also be used for in situ formed and stable passivation layers for selective growth of $GaAs_2$. In this work, formation of a thin nitrided layer is investigated. Nitrogen electron cyclotron resonance(ECR)-plasma is employed for the formation of thin nitrided layer. The plasma source used in this work is a compact ECR plasma gun3 which is specifically designed to enhance control, and to provide in-situ monitoring of plasma parameters during plasma-assisted processing. Microwave power of 100-200 W was used to excite the plasma which was emitted from an orifice of 25 rnm in diameter. The substrate were positioned 15 em away from the orifice of plasma source. Prior to nitridation is performed, the surface of n-type (001)GaAs was exposed to hydrogen plasma for 20 min at $300{\;}^{\circ}C$ in order to eliminate a native oxide formed on GaAs surface. Change from ring to streak in RHEED pattern can be obtained through the irradiation of hydrogen plasma, indicating a clean surface. Nitridation was carried out for 5-40 min at $RT-600{\;}^{\circ}C$ in a ECR plasma-assisted molecular beam epitaxy system. Typical chamber pressure was $7.5{\times}lO^{-4}$ Torr during the nitridations at $N_2$ flow rate of 10 seem.(omitted)mitted)

  • PDF

Effect of gate electrode material on electrical characteristics of a-IGZO thin-film transistors (게이트 전극 물질이 a-IGZO 박막트랜지스터의 전기적 특성에 미치는 영향)

  • Oh, Hyungon;Cho, Kyoungah;Kim, Sangsig
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.170-173
    • /
    • 2017
  • In this study, we fabricate amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with three different gate electrode materials of Al, Mo and Pt on plastic substrates and investigate their electrical characteristics. Compared to an a-IGZO TFT with Al gate electrode, the threshold voltage of an a-IGZO TFT with a Pt electrode decreases from -4.2 to -0.3 V. and the filed-effect mobility is improved from 15.8 to $22.1cm^2/V{\cdot}s$. The threshold voltage shift of the TFT is affected by the difference between the work function of the gate electrode and the Fermi energy of the channel layer. Moreover, the Pt gate electrode is considered to be the suitable material in terms of the electrical characteristics of the TFT. In addition, an description on an a-IGZO TFT with a Mo electrode will be given here.