• Title/Summary/Keyword: Gallate

Search Result 436, Processing Time 0.024 seconds

Inhibition of Oral Epithelial Cell Growth in vitro by Epigallocatechin-3-gallate; Its Modulation by Serum and Antioxidant Enzymes

  • Hong, Jung-Il;Kim, Mi-Ri;Lee, Na-Hyun;Lee, Bo-Hyun
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.971-977
    • /
    • 2009
  • The most abundant tea catechin, epigallocatechin-3-gallate (EGCG), has been reported to inhibit cell proliferation and induce apoptosis in many types of cancer cells. In the present study, effects of EGCG on the growth of oral epithelial cells including CAL-27 oral squamous carcinoma cells and dysplastic oral keratinocytes (DOK) were investigated. EGCG inhibited growth of CAL-27 cells and DOK with $IC_{50}$ of 14.4-21.0 and 5.8-14.2 ${\mu}M$ after 24 and 48 hr incubation, respectively. EGCG was significantly less effective in inhibiting DOK growth. The effects of EGCG, however, were dramatically less pronounced in the presence of superoxide dismutase (SOD) and catalase. Inhibitory effects of EGCG on CAL-27 cell growth were also much less pronounced in the presence of fetal bovine serum (FBS). EGCG induced caspase-3 activation in both CAL-27 and DOK cells in a serum free condition without SOD/catalase; in the presence of 10% FBS and SOD/catalase, EGCG, even at 100 ${\mu}M$, did not affect cell growth. The present results indicate that EGCG inhibited oral cell growth with higher potency to more malignant CAL-27 cells than DOK, and the effects were markedly altered by SOD/catalase and serum content in media.

Combined Effects of Curcumin and (-)-Epigallocatechin Gallate on Inhibition of N-Acylhomoserine Lactone-Mediated Biofilm Formation in Wastewater Bacteria from Membrane Bioreactor

  • Lade, Harshad;Paul, Diby;Kweon, Ji Hyang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1908-1919
    • /
    • 2015
  • This work investigated the potential of curcumin (CCM) and (-)-epigallocatechin gallate (EGCG) to inhibit N-acyl homoserine lactone (AHL)-mediated biofilm formation in gram-negative bacteria from membrane bioreactor (MBR) activated sludge. The minimum inhibitory concentrations (MICs) of CCM alone against all the tested bacteria were 200-350 μg/ml, whereas those for EGCG were 300-600 μg/ml. Biofilm formation at one-half MICs indicated that CCM and EGCG alone respectively inhibited 52-68% and 59-78% of biofilm formation among all the tested bacteria. However, their combination resulted in 95-99% of biofilm reduction. Quorum sensing inhibition (QSI) assay with known biosensor strains demonstrated that CCM inhibited the expression of C4 and C6 homoserine lactones (HSLs)-mediated phenotypes, whereas EGCG inhibited C4, C6, and C10 HSLs-based phenotypes. The Center for Disease Control biofilm reactor containing a multispecies culture of nine bacteria with one-half MIC of CCM (150 μg/ml) and EGCG (275 μg/ml) showed 17 and 14 μg/cm2 of extracellular polymeric substances (EPS) on polyvinylidene fluoride membrane surface, whereas their combination (100 μg/ml of each) exhibited much lower EPS content (3 μg/cm2). Confocal laser scanning microscopy observations also illustrated that the combination of compounds tremendously reduced the biofilm thickness. The combined effect of CCM with EGCG clearly reveals for the first time the enhanced inhibition of AHL-mediated biofilm formation in bacteria from activated sludge. Thus, such combined natural QSI approach could be used for the inhibition of membrane biofouling in MBRs treating wastewaters.

(-)-Epigallocatechin-3-gallate Modulates the Differential Expression of Survivin Splice Variants and Protects Spermatogenesis During Testicular Torsion

  • Al-Ajmi, Nada;Al-Maghrebi, May;Renno, Waleed Mohammed
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.259-265
    • /
    • 2013
  • The anti-apoptotic effect of (-)-epigallocatechin-3-gallate (EGCG) during unilateral testicular torsion and detorsion (TT/D) was established in our previous study. In mice, the smallest inhibitor of apoptosis, survivin, is alternatively spliced into three variants, each suggested to have a unique function. Here, we assessed how EGCG exerts its protective effect through the expression of the different survivin splice variants and determined its effect on the morphology of the seminiferous tubules during TT/D. Three mouse groups were used: sham, TT/D+vehicle and TT/D treated with EGCG. The expression of the survivin variants (140 and 40) and other apoptosis genes (p53, Bax and Bcl-2) was measured with semi-quantitative RT-PCR. Histological analysis was performed to assess DNA fragmentation, damage to spermatogenesis and morphometric changes in the seminiferous tubules. In the TT/D+vehicle group, survivin 140 expression was markedly decreased, whereas survivin 40 expression was not significantly different. In parallel, there was an increase in the mRNA level of p53 and the Bax to Bcl-2 ratio in support of apoptosis induction. Histological analyses revealed increased DNA fragmentation and increased damage to spermatogenesis associated with decreased seminiferous tubular diameter and decreased germinal epithelial cell thickness in the TT/D+vehicle group. These changes were reversed to almost sham levels upon EGCG treatment. Our data indicate that EGCG protects the testis from TT/D-induced damage by protecting the morphology of the seminiferous tubules and modulating survivin 140 expression.

Comparison of Green Tea Extract and Epigallocatechin Gallate on Blood Pressure and Contractile Responses of Vascular Smooth Muscle of Rats

  • Lim, Dong-Yoon;Lee, Eun-Sook;Park, Hyeon-Gyoon;Kim, Byeong-Cheol;Hong, Soon-Pyo;Lee, Eun-Bang
    • Archives of Pharmacal Research
    • /
    • v.26 no.3
    • /
    • pp.214-223
    • /
    • 2003
  • The present study was conducted to investigate the effects of green tea extract (GTE) on arterial blood pressure and contractile responses of isolated aortic strips of the normotensive rats and to establish the mechanism of action. The phenylephrine ($10^{-6}~10^{-5}M$)-induced contractile responses were greatly inhibited in the presence of GTE (0.3~1.2 mg/mL) in a dose-dependent fashion. Also, high potassium ($3.5{\times}10^{-2}~5.6{\times}10^{-2}{\;}M$)-induced contractile responses were depressed in the presence of 0.6~1.2 mg/mL of GTE, but not affected in low concentration of GTE (0.3 mg/mL). However, epigallocatechin gallate (EGCG, $4~12{\;}{\mu}g/mL$) did not affect the contractile responses evoked by phenylephrine and high $K^+$. GTE (5~20 mg/kg) given into a femoral vein of the normotensive rat produced a dose-dependent depressor response, which is transient. Interestingly, the infusion of a moderate dose of GTE (10 mg/kg/30 min) made a significant reduction in pressor responses induced by intravenous norepinephrine. However, EGCG (1 mg/kg/30 min) did not affect them. Collectively, these results obtained from the present study demonstrate that intravenous GTE causes a dose-dependent depressor action in the anesthetized rat at least partly through the blockade of adrenergic $\alpha_1$-receptors. GTE also causes the relaxation in the isolated aortic strips of the rat via the blockade of adrenergic $\alpha_1$-receptors, in addition to the unknown direct mechanism. It seems that there is a big difference in the vascular effect between GTE and EGCG.

An Industrial Application for functional Materials and Polyphenols Isolated from the Korean Persimmon Leaves (감나무잎 폴리페놀의 기능성 소재로서 산업적 활용)

  • 안봉전
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2002.04a
    • /
    • pp.29-40
    • /
    • 2002
  • 감잎으로부터 통풍치료, 미백효과, 고혈압 억제효과의 개발목적으로 9종의 flavan-3-ol 화합물을 분리하였고 기기분석에 의해 화학구조를 자혔다. 각 화합물은 (+)-catechin (+)-gallocatechin procyanidinB-l, pyrocyanidin C-1, prodelphinidin B-3, gallocatechin-(4$\alpha$$\longrightarrow$8)-catechin과 감나무 잎에서 새로운물질인pocyanidin B-7-3-0-gallate, procyanidin C-1-3'-3" -3.'S _0-trigallate, (-)-epigallocatechin-(4 $\beta$ -18)-epigallocatechin-(4$\beta$-'8)-catechin 3종류를 발견하였다. 감잎으로부터 순수 분리한 polyphenol류의ACE 저해활성측정을 실험한 결과 pocyanidin B-7-3-0-gallate는 100rM농도에서 94%의 저해효과를 나타내었으며 epigallocatechin-(4$\beta$$\longrightarrow$8)-epigallo-catechin-(4$\beta$$\longrightarrow$8)-catechia procyanidin C-1-3'-3" -3f'.-0-trigallate는 각각 90.69, 80.90% 저해를 하였다. Xanthine oxidase 저해활성측정을 조사한 결과pocyanidin B-7-3-0-galtate와 pocyanidin C-1-3'-3" -3/'S _0-trigallate 즉, gallate가 붙은 호합물에서100rM의 농도에서 66%와 63%의 강한 저해효과를 나타났다. Tyrosinase 저해활성을 측정한 결과는pocyanidin C-1-3'-3" -3.'S _0-trigallate는 100rM에서 70%의 강한 저해효과를 나타냈으며,epigallocatechin-(4$\beta$$\longrightarrow$8)-epigallo-catechin-(4$\beta$$\longrightarrow$8)-catechin는 51%의 저해효과를 나타내었다. 산업적응용을 위해 분획한 폴리페놀군은 미백효과 검증실험인 tyrosinase 저해율 측정평가에서 폴리페놀 함량이 가장 높은 Fraction 111의 경우 Sooppm에서 74.2%의 높은 저해율을 나타내었다. 항산화력 실험에서는500pw1이상에서 강한 활성능을 보인 SOD 유사활성능을 제외한 나머지 DPPH와 xanthine oxidase 저해효과에서는 Fraction II와III 모두가50ppm이상에서 80% 이상의 높은 유리라디칼 소거능력을 나타내었다. 그리고 각 Fraction별 항균력 측정 결과 Fraction 르와 111이 우수하게 나타났고 항균활성은 그람음성균보다 그람양성균에서 효과적이었으며, 농도별 항균력시험 결과 농도가 증가할수록 비례하여 저해율도 증가함을 알 수 있었다. 첨가농도를 달리하여 미생물의 생육도를 측정한 결과, fraction II磎꼭\ulcorner경우 그람양성균에 대해 500 ppm 이상에서 뚜렷한 증식억제효과를 나타내었다.서 뚜렷한 증식억제효과를 나타내었다.

  • PDF

Synergistic effect of curcumin on epigallocatechin gallate-induced anticancer action in PC3 prostate cancer cells

  • Eom, Dae-Woon;Lee, Ji Hwan;Kim, Young-Joo;Hwang, Gwi Seo;Kim, Su-Nam;Kwak, Jin Ho;Cheon, Gab Jin;Kim, Ki Hyun;Jang, Hyuk-Jai;Ham, Jungyeob;Kang, Ki Sung;Yamabe, Noriko
    • BMB Reports
    • /
    • v.48 no.8
    • /
    • pp.461-466
    • /
    • 2015
  • Epigallocatechin gallate (EGCG) and curcumin are well known to naturally-occurring anticancer agents. The aim of this study was to verify the combined beneficial anticancer effects of curcumin and EGCG on PC3 prostate cancer cells, which are resistant to chemotherapy drugs and apoptosis inducers. EGCG showed weaker inhibitory effect on PC3 cell proliferation than two other prostate cancer cell lines, LNCaP and DU145. Co-treatment of curcumin improved antiproliferative effect of EGCG on PC3 cells. The protein expressions of p21 were significantly increased by the co-treatment of EGCG and curcumin, whereas it was not changed by the treatment with each individual compound. Moreover, treatments of EGCG and curcumin arrested both S and G2/M phases of PC3 cells. These results suggest that the enhanced inhibitory effect of EGCG on PC3 cell proliferation by curcumin was mediated by the synergic up-regulation of p21-induced growth arrest and followed cell growth arrest. [BMB Reports 2015; 48(8): 461-466]

Protective effect of gallic acid derivatives from the freshwater green alga Spirogyra sp. against ultraviolet B-induced apoptosis through reactive oxygen species clearance in human keratinocytes and zebrafish

  • Wang, Lei;Ryu, BoMi;Kim, Won-Suk;Kim, Gwang Hoon;Jeon, You-Jin
    • ALGAE
    • /
    • v.32 no.4
    • /
    • pp.379-388
    • /
    • 2017
  • In the present study, we enhanced the phenolic content of 70% ethanol extracts of Spirogyra sp. (SPE, $260.47{\pm}5.21$ gallic acid equivalent $[GAE]mg\;g^{-1}$), 2.97 times to $774.24{\pm}2.61GAE\;mg\;g^{-1}$ in the ethyl acetate fraction of SPE (SPEE). SPEE was evaluated for its antiradical activity in online high-performance liquid chromatography-ABTS analysis, and the peaks with the highest antiradical activities were identified as gallic acid derivatives containing gallic acid, methyl gallate, and ethyl gallate. Isolation of ethyl gallate from Spirogyra sp. was performed for the first time in this study. In ultraviolet B (UVB)-irradiated keratinocytes (HaCaT cells), SPEE improved cell viability by 8.22%, and 23.33% and reduced accumulation of cells in the sub-$G_1$ phase by 20.53%, and 32.11% at the concentrations of 50 and $100{\mu}g\;mL^{-1}$, respectively. Furthermore, SPEE (50 and $100{\mu}g\;mL^{-1}$) reduced reactive oxygen species generation in UVB-irradiated zebrafish by 66.67% and 77.78%. This study suggests a protective activity of gallic acid and its derivatives from Spirogyra sp. against UVB-induced stress responses in both in vitro and in vivo models, suggesting a potential use of SPEE in photoprotection.

Comparison of Hydroxyl Radical, Peroxyl Radical, and Peroxynitrite Scavenging Capacity of Extracts and Active Components from Selected Medicinal Plants

  • Kwon, Do-Young;Kim, Sun-Ju;Lee, Ju-Won;Kim, Young-Chul
    • Toxicological Research
    • /
    • v.26 no.4
    • /
    • pp.321-327
    • /
    • 2010
  • The ability of 80% ethanol extracts from five medicinal plants, Aralia continentalis, Paeonia suffruticosa, Magnolia denudata, Anemarrhena asphodeloides, and Schizonepeta tenuifolia, to neutralize hydroxyl radical, peroxyl radical and peroxynitrite was examined using the total oxyradical scavenging capacity (TOSC) assay. Peroxyl radical was generated from thermal homolysis of 2,2'-azobis(2-methylpropionamidine) dihydrochloride (ABAP); hydroxyl radical by an iron-ascorbate Fenton reaction; peroxynitrite by spontaneous decomposition of 3-morpholinosydnonimine N-ethylcarbamide (SIN-1). The oxidants generated react with $\alpha$-keto-$\gamma$-methiolbutyric acid (KMBA) to yield ethylene, and the TOSC of the substances tested is quantified from their ability to inhibit ethylene formation. Extracts from P. suffruticosa, M. denudata, and S. tenuifolia were determined to be potent peroxyl radical scavenging agents with a specific TOSC (sTOSC) being at least six-fold greater than that of glutathione (GSH). These three plants also showed sTOSCs toward peroxynitrite markedly greater than sTOSC of GSH, however, only P. suffruticosa revealed a significant hydroxyl radical scavenging capacity. Seven major active constituents isolated from P. suffruticosa, quercetin, (+)-catechin, methyl gallate, gallic acid, benzoic acid, benzoyl paeoniflorin and paeoniflorin, were determined for their antioxidant potential toward peroxynitrite, peroxyl and hydroxyl radicals. Quercetin, (+)-catechin, methyl gallate, and gallic acid exhibited sTOSCs 40~85 times greater than sTOSC of GSH. These four components also showed a peroxynitrite scavenging capacity higher than at least 10-fold of GSH. For antioxidant activity against hydroxyl radical, methyl gallate was greatest followed by gallic acid and quercetin. Further studies need to be conducted to substantiate the significance of scavenging a specific oxidant in the prevention of cellular injury and disease states caused by the reactive free radical species.

Quantitative Determination of the Triterpenoids and Total Tannin in Korean Rubus species by HPLC

  • Kim, Min-Young;Tapondjou, Leon Azefack;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • v.20 no.4
    • /
    • pp.290-295
    • /
    • 2014
  • The triterpenoids contained in four Rubus species (Rosaceae) were quantitatively analyzed using HPLC to select plants with large quantities of niga-ichigoside $F_1$. Unripe fruits, ripe fruits, and leaves were extracted to estimate the quantity of niga-ichigoside $F_1$, together with Rubus-specific $19{\alpha}$-hydroxyursane-type triterpenoids, euscaphic acid, tormentic acid, and kaji-ichigoside $F_1$, and a dimeric triterpenoid coreanoside $F_1$. Niga-ichigoside $F_1$ was most abundant in the leaves of R. crataegifolius (23.4 mg/g dry weight). The amount of triterpenoid in the black, ripe fruits of R. coreanus was lower than the unripe fruits of the same plant. On the other hand, the ripe fruits of three plants, R. crataegifolius, R. parvifolius and R. pungens var. oldhami, which are reddish, contained higher or similar level of triterpenoids than their unripe fruits. In addition, the concentration of niga-ichigoside $F_1$ in the ripe fruit of R. crataegifolius was 20.5 mg/g, suggesting that the fruits could be used as a functional food. Methyl gallate and ellagic acid were used as quantitative indices of total tannin. Methyl gallate levels were higher in ripe fruits than unripe fruits in R. crataegifolius, R. pungens var. oldhami, and R. parvifolius. In R. crataegifolius, the quantity of methyl gallate was 30.5 mg/g in ripe fruit, but 1.19 mg/g in unripe fruit.

Effect of Epigallocatechin-3-Gallate on the alveolar bone remodeling and arthritis in collagen-induced arthritis model in mice (콜라겐 유도 관절염 모델에서 동반된 치주염 유발시 EGCG가 치주염 치료에 미치는 효과에 관한 연구)

  • Cho, In-Woo;Yim, Seong-Jun;Shin, Hyun-Seung;Park, Jung-Chul
    • The Journal of the Korean dental association
    • /
    • v.54 no.4
    • /
    • pp.284-295
    • /
    • 2016
  • The aim of this study was to evaluate the effect of Epigallocatechin-3-Gallate (EGCG) on the alveolar bone metabolism in a collagen-induced arthritis (CIA) model in mice to enhance the understanding of rheumatoid arthritis (RA)-associated alveolar bone loss. Following the induction of CIA in animals (mice, n=16), mandibles were retrieved for micro-computed tomography (micro-CT) and isolation of alveolar bone cells (ABCs). In vitro osteogenic potentials of ABCs were evaluated and the mRNA expression of downstream effector genes was assessed. CIA was successfully induced in all animals, and micro-CT data showed that alveolar bone loss was significantly increased in the CIA group while the treatment of EGCG prevented the alveolar bone resorption. Osteogenesis by ABCs was significantly increased in the CIA+EGCG group in vitro. The analysis of mRNA expressions showed that osteoclastogenesis-associated genes were increased in CIA group while bone protecting genes were upregulated in EGCG treated group. The results demonstrate that EGCG downregulated the alveolar bone resorption in a CIA model in mice, and upregulation of bone protecting genes appear to be involved. Further studies are warranted.

  • PDF