DOI QR코드

DOI QR Code

(-)-Epigallocatechin-3-gallate Modulates the Differential Expression of Survivin Splice Variants and Protects Spermatogenesis During Testicular Torsion

  • Al-Ajmi, Nada (Department of Natural Sciences, College of Health Sciences, The Public Authority for Applied Education & Training) ;
  • Al-Maghrebi, May (Department of Biochemistry, Faculty of Medicine-Kuwait University) ;
  • Renno, Waleed Mohammed (Department of Anatomy, Faculty of Medicine-Kuwait University)
  • Received : 2013.01.20
  • Accepted : 2013.05.16
  • Published : 2013.08.30

Abstract

The anti-apoptotic effect of (-)-epigallocatechin-3-gallate (EGCG) during unilateral testicular torsion and detorsion (TT/D) was established in our previous study. In mice, the smallest inhibitor of apoptosis, survivin, is alternatively spliced into three variants, each suggested to have a unique function. Here, we assessed how EGCG exerts its protective effect through the expression of the different survivin splice variants and determined its effect on the morphology of the seminiferous tubules during TT/D. Three mouse groups were used: sham, TT/D+vehicle and TT/D treated with EGCG. The expression of the survivin variants (140 and 40) and other apoptosis genes (p53, Bax and Bcl-2) was measured with semi-quantitative RT-PCR. Histological analysis was performed to assess DNA fragmentation, damage to spermatogenesis and morphometric changes in the seminiferous tubules. In the TT/D+vehicle group, survivin 140 expression was markedly decreased, whereas survivin 40 expression was not significantly different. In parallel, there was an increase in the mRNA level of p53 and the Bax to Bcl-2 ratio in support of apoptosis induction. Histological analyses revealed increased DNA fragmentation and increased damage to spermatogenesis associated with decreased seminiferous tubular diameter and decreased germinal epithelial cell thickness in the TT/D+vehicle group. These changes were reversed to almost sham levels upon EGCG treatment. Our data indicate that EGCG protects the testis from TT/D-induced damage by protecting the morphology of the seminiferous tubules and modulating survivin 140 expression.

Keywords

References

  1. Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol. 2011;82:1807- 1821. https://doi.org/10.1016/j.bcp.2011.07.093
  2. Borska S, Gebarowska E, Wysocka T, Drag-Zalesinska M, Zabel M. Induction of apoptosis by EGCG in selected tumour cell lines in vitro. Folia Histochem Cytobiol. 2003;41:229-232.
  3. Lambert JD, Yang CS. Mechanisms of cancer prevention by tea constituents. J Nutr. 2003;133:3262S-3267S.
  4. Gupta S, Hastak K, Afaq F, Ahmad N, Mukhtar H. Essential role of caspases in epigallocatechin-3-gallate-mediated inhibition of nuclear factor kappa B and induction of apoptosis. Oncogene. 2004;23:2507-2522. https://doi.org/10.1038/sj.onc.1207353
  5. Chen ZP, Schell JB, Ho CT, Chen KY. Green tea epigallocatechin gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Lett. 1998;129:173-179. https://doi.org/10.1016/S0304-3835(98)00108-6
  6. Al-Maghrebi M, Renno WM, Al-Ajmi N. Epigallocatechin- 3-gallate inhibits apoptosis and protects testicular seminiferous tubules from ischemia/reperfusion-induced inflammation. Biochem Biophys Res Commun. 2012;420:434-439. https://doi.org/10.1016/j.bbrc.2012.03.013
  7. Horica CA, Hadziselimovic F, Kreutz G, Bandhauer K. Ultrastructural studies of the contorted and contralateral testicle in unilateral testicular torsion. Eur Urol. 1982;8:358-362.
  8. Thomas WE, Williamson RC. Diagnosis and outcome of testicular torsion. Br J Surg. 1983;70:213-216. https://doi.org/10.1002/bjs.1800700409
  9. Cheung CH, Cheng L, Chang KY, Chen HH, Chang JY. Investigations of survivin: the past, present and future. Front Biosci. 2011;16:952-961. https://doi.org/10.2741/3728
  10. Mahotka C, Wenzel M, Springer E, Gabbert HE, Gerharz CD. Survivin-deltaEx3 and survivin-2B: two novel splice variants of the apoptosis inhibitor survivin with different antiapoptotic properties. Cancer Res. 1999;59:6097-6102.
  11. Johnson AL, Langer JS, Bridgham JT. Survivin as a cell cycle-related and antiapoptotic protein in granulosa cells. Endocrinology. 2002;143:3405-3413. https://doi.org/10.1210/en.2002-220107
  12. Conway EM, Pollefeyt S, Cornelissen J, DeBaere I, Steiner- Mosonyi M, Ong K, Baens M, Collen D, Schuh AC. Three differentially expressed survivin cDNA variants encode proteins with distinct antiapoptotic functions. Blood. 2000;95: 1435-1442.
  13. Absalan F, Movahedin M, Mowla SJ. Germ cell apoptosis induced by experimental cryptorchidism is mediated by molecular pathways in mouse testis. Andrologia. 2010;42:5-12. https://doi.org/10.1111/j.1439-0272.2009.00947.x
  14. Amiri S, Movahedin M, Mowla SJ, Hajebrahimi Z, Tavallaei M. Differential gene expression and alternative splicing of survivin following mouse sciatic nerve injury. Spinal Cord. 2009;47:739-744. https://doi.org/10.1038/sc.2009.26
  15. Absalan F, Movahedin M, Mowla SJ. Evaluation of apoptotic genes expression and its protein after treatment of cryptorchid mice. Iran Biomed J. 2012;16:77-83.
  16. Aktas BK, Bulut S, Bulut S, Baykam MM, Ozden C, Senes M, Yucel D, Memis A. The effects of N-acetylcysteine on testicular damage in experimental testicular ischemia/reperfusion injury. Pediatr Surg Int. 2010;26:293-298. https://doi.org/10.1007/s00383-009-2538-0
  17. Mehraein F, Negahdar F. Morphometric evaluation of seminiferous tubules in aged mice testes after melatonin administration. Cell J. 2011;13:1-4.
  18. Osinubi AA, Noronha CC, Okanlawon AO. Morphometric and stereological assessment of the effects of long-term administration of quinine on the morphology of rat testis. West Afr J Med. 2005;24:200-205.
  19. Johnsen SG. Testicular biopsy score count--a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormones. 1970;1:2-25. https://doi.org/10.1159/000178170
  20. Uren AG, Wong L, Pakusch M, Fowler KJ, Burrows FJ, Vaux DL, Choo KH. Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype. Curr Biol. 2000;10:1319-1328. https://doi.org/10.1016/S0960-9822(00)00769-7
  21. Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med. 1997; 3:917-921. https://doi.org/10.1038/nm0897-917
  22. Fukuda S, Pelus LM. Regulation of the inhibitor-of-apoptosis family member survivin in normal cord blood and bone marrow CD34(+) cells by hematopoietic growth factors: implication of survivin expression in normal hematopoiesis. Blood. 2001;98: 2091-2100. https://doi.org/10.1182/blood.V98.7.2091
  23. Kobayashi K, Hatano M, Otaki M, Ogasawara T, Tokuhisa T. Expression of a murine homologue of the inhibitor of apoptosis protein is related to cell proliferation. Proc Natl Acad Sci U S A. 1999;96:1457-1462. https://doi.org/10.1073/pnas.96.4.1457
  24. Noton EA, Colnaghi R, Tate S, Starck C, Carvalho A, Ko Ferrigno P, Wheatley SP. Molecular analysis of survivin isoforms: evidence that alternatively spliced variants do not play a role in mitosis. J Biol Chem. 2006;281:1286-1295. https://doi.org/10.1074/jbc.M508773200
  25. Vagnarelli P, Earnshaw WC. Chromosomal passengers: the four-dimensional regulation of mitotic events. Chromosoma. 2004;113:211-222. https://doi.org/10.1007/s00412-004-0307-3
  26. Yang D, Welm A, Bishop JM. Cell division and cell survival in the absence of survivin. Proc Natl Acad Sci U S A. 2004; 101:15100-15105. https://doi.org/10.1073/pnas.0406665101
  27. Zheng WY, Kang YY, Li LF, Xu YX, Ma XY. Levels of effectiveness of gene therapies targeting survivin and its splice variants in human breast cancer cells. Drug Discov Ther. 2011;5:293-298.
  28. Marioni G, Agostini M, Bedin C, Blandamura S, Stellini E, Favero G, Lionello M, Giacomelli L, Burti S, D'Angelo E, Nitti D, Staffieri A, De Filippis C. Survivin and laryngeal carcinoma prognosis: nuclear localization and expression of splice variants. Histopathology. 2012;61:247-256. https://doi.org/10.1111/j.1365-2559.2012.04217.x
  29. Pentikainen V, Dunkel L, Erkkila K. Male germ cell apoptosis. Endocr Dev. 2003;5:56-80. https://doi.org/10.1159/000069294
  30. Rudner AD, Murray AW. The spindle assembly checkpoint. Curr Opin Cell Biol. 1996;8:773-780. https://doi.org/10.1016/S0955-0674(96)80077-9
  31. Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407:770-776. https://doi.org/10.1038/35037710
  32. O'Connor DS, Wall NR, Porter AC, Altieri DC. A p34(cdc2) survival checkpoint in cancer. Cancer Cell. 2002;2:43-54. https://doi.org/10.1016/S1535-6108(02)00084-3
  33. Wang Y, Suominen JS, Hakovirta H, Parvinen M, Martinand-Mari C, Toppari J, Robbins I. Survivin expression in rat testis is upregulated by stem-cell factor. Mol Cell Endocrinol. 2004;218:165-174. https://doi.org/10.1016/j.mce.2003.11.028
  34. Allan DJ, Harmon BV, Kerr JFR. Cell death in spermatogenesis: perspectives on mammalian cell death. Oxford: University Press; c1987. 229 p.
  35. Clermont Y. Quantitative analysis of spermatogenesis of the rat: a revised model for the renewal of spermatogonia. Am J Anat. 1962;111:111-129. https://doi.org/10.1002/aja.1001110202
  36. Roosen-Runge EC. Germinal-cell loss in normal metazoan spermatogenesis. J Reprod Fertil. 1973;35:339-348. https://doi.org/10.1530/jrf.0.0350339
  37. Britschgi A, Simon HU, Tobler A, Fey MF, Tschan MP.Epigallocatechin-3-gallate induces cell death in acute myeloid leukaemia cells and supports all-trans retinoic acid-induced neutrophil differentiation via death-associated protein kinase 2. Br J Haematol. 2010;149:55-64. https://doi.org/10.1111/j.1365-2141.2009.08040.x
  38. Johnson JJ, Bailey HH, Mukhtar H. Green tea polyphenols for prostate cancer chemoprevention: a translational perspective. Phytomedicine. 2010;17:3-13. https://doi.org/10.1016/j.phymed.2009.09.011
  39. Farabegoli F, Papi A, Bartolini G, Ostan R, Orlandi M. (-)-Epigallocatechin-3-gallate downregulates Pg-P and BCRP in a tamoxifen resistant MCF-7 cell line. Phytomedicine. 2010;17: 356-362. https://doi.org/10.1016/j.phymed.2010.01.001
  40. Tang SN, Singh C, Nall D, Meeker D, Shankar S, Srivastava RK. The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition. J Mol Signal. 2010;5:14. https://doi.org/10.1186/1750-2187-5-14
  41. McLaughlin N, Annabi B, Bouzeghrane M, Temme A, Bahary JP, Moumdjian R, Beliveau R. The Survivin-mediated radioresistant phenotype of glioblastomas is regulated by RhoA and inhibited by the green tea polyphenol (-)-epigallocatechin- 3-gallate. Brain Res. 2006;1071:1-9. https://doi.org/10.1016/j.brainres.2005.10.009
  42. Onoda C, Kuribayashi K, Nirasawa S, Tsuji N, Tanaka M, Kobayashi D, Watanabe N. (-)-Epigallocatechin-3-gallate induces apoptosis in gastric cancer cell lines by down-regulating survivin expression. Int J Oncol. 2011;38:1403-1408.
  43. Altavilla D, Romeo C, Squadrito F, Marini H, Morgia G, Antonuccio P, Minutoli L. Molecular pathways involved in the early and late damage induced by testis ischemia: evidence for a rational pharmacological modulation. Curr Med Chem. 2012; 19:1219-1224. https://doi.org/10.2174/092986712799320538
  44. Oeckinghaus A, Hayden MS, Ghosh S. Crosstalk in NF-$\kappa$B signaling pathways. Nat Immunol. 2011;12:695-708.
  45. Chu SH, Lim JW, Kim DG, Lee ES, Kim KH, Kim H. Downregulation of Bcl-2 is mediated by NF-$\kappa$B activation in Helicobacter pylori-induced apoptosis of gastric epithelial cells. Scand J Gastroenterol. 2011;46:148-155. https://doi.org/10.3109/00365521.2010.525255
  46. Jeyasuria P, Subedi K, Suresh A, Condon JC. Elevated levels of uterine anti-apoptotic signaling may activate NFKB and potentially confer resistance to caspase 3-mediated apoptotic cell death during pregnancy in mice. Biol Reprod. 2011;85: 417-424. https://doi.org/10.1095/biolreprod.111.091652
  47. Eckelman BP, Salvesen GS, Scott FL. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep. 2006;7:988-994. https://doi.org/10.1038/sj.embor.7400795
  48. Mehrotra S, Languino LR, Raskett CM, Mercurio AM, Dohi T, Altieri DC. IAP regulation of metastasis. Cancer Cell. 2010; 17:53-64. https://doi.org/10.1016/j.ccr.2009.11.021
  49. Kim SJ, Lee JH, Kim BS, So HS, Park R, Myung NY, Um JY, Hong SH. (-)-Epigallocatechin-3-gallate protects against NOinduced ototoxicity through the regulation of caspase- 1, caspase-3, and NF-κB activation. PLoS One. 2012;7:e43967. https://doi.org/10.1371/journal.pone.0043967
  50. Ortega-Ferrusola C, Garcia BM, Gallardo-Bolanos JM, Gonzalez- Fernandez L, Rodriguez-Martinez H, Tapia JA, Pena FJ. Apoptotic markers can be used to forecast the freezeability of stallion spermatozoa. Anim Reprod Sci. 2009;114:393-403. https://doi.org/10.1016/j.anireprosci.2008.10.005
  51. Weng SL, Taylor SL, Morshedi M, Schuffner A, Duran EH, Beebe S, Oehninger S. Caspase activity and apoptotic markers in ejaculated human sperm. Mol Hum Reprod. 2002;8:984-991. https://doi.org/10.1093/molehr/8.11.984
  52. Aitken RJ, Koppers AJ. Apoptosis and DNA damage in human spermatozoa. Asian J Androl. 2011;13:36-42. https://doi.org/10.1038/aja.2010.68

Cited by

  1. (-)-Epigallocatechin-3-Gallate Modulates Spinal Cord Neuronal Degeneration by Enhancing Growth-Associated Protein 43, B-Cell Lymphoma 2, and Decreasing B-Cell Lymphoma 2-Associated X Protein Expressio vol.32, pp.3, 2013, https://doi.org/10.1089/neu.2014.3491
  2. Protection of Murine Spermatogenesis Against Ionizing Radiation-Induced Testicular Injury by a Green Tea Polyphenol1 vol.92, pp.1, 2015, https://doi.org/10.1095/biolreprod.114.122333
  3. Splicing imbalances in basal-like breast cancer underpin perturbation of cell surface and oncogenic pathways and are associated with patients’ survival vol.7, pp.None, 2013, https://doi.org/10.1038/srep40177
  4. The Thioredoxin System is Regulated by the ASK-1/JNK/p38/Survivin Pathway During Germ Cell Apoptosis vol.24, pp.18, 2013, https://doi.org/10.3390/molecules24183333