• Title/Summary/Keyword: Galerkin Finite Element Method

Search Result 248, Processing Time 0.024 seconds

Analysis of Arbitrary Three Dimensional Cracks in the Finite Body Using the Symmetric Galerkin Boundary Element Method (대칭 Galerkin 경계요소법을 이용한 유한체 내에 존재하는 임의의 삼차원 균열의 해석)

  • Park, Jai-Hak;Kim, Tae-Soon
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.38-43
    • /
    • 2004
  • Many analysis methods, including finite element method, have been suggested and used for assessing the integrity of cracked structures. In the paper, in order to analyze arbitrary three dimensional cracks, the finite element alternating method is extended. The crack is modeled by the symmetric Galerkin boundary element method as a distribution of displacement discontinuities, which is formulated as singularity-reduced integral equations. And the finite element method is used to calculate the stress values for the uncracked body only. Applied the proposed method to several example problems for planner cracks in finite bodies, the accuracy and efficiency of the method were demonstrated.

Sensitivity Analysis of the Galerkin Finite Element Method Neutron Diffusion Solver to the Shape of the Elements

  • Hosseini, Seyed Abolfazl
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.29-42
    • /
    • 2017
  • The purpose of the present study is the presentation of the appropriate element and shape function in the solution of the neutron diffusion equation in two-dimensional (2D) geometries. To this end, the multigroup neutron diffusion equation is solved using the Galerkin finite element method in both rectangular and hexagonal reactor cores. The spatial discretization of the equation is performed using unstructured triangular and quadrilateral finite elements. Calculations are performed using both linear and quadratic approximations of shape function in the Galerkin finite element method, based on which results are compared. Using the power iteration method, the neutron flux distributions with the corresponding eigenvalue are obtained. The results are then validated against the valid results for IAEA-2D and BIBLIS-2D benchmark problems. To investigate the dependency of the results to the type and number of the elements, and shape function order, a sensitivity analysis of the calculations to the mentioned parameters is performed. It is shown that the triangular elements and second order of the shape function in each element give the best results in comparison to the other states.

Parallel finite element simulation of free surface flows using Taylor-Galerkin/level-set method (Taylor-Galerkin/level-set 방법을 이용한 자유 표면의 병렬 유한 요소 해석)

  • Ahn, Young-Kyoo;Choi, Hyoung-Gwon;Cho, Myung-Hwan;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2558-2561
    • /
    • 2008
  • In the present study, a parallel Taylor-Galerkin/level set based two-phase flow code was developed using finite element discretization and domain decomposition method based on MPI (Message Passing Interface). The proposed method can be utilized for the analysis of a large scale free surface problem in a complex geometry due to the feature of FEM and domain decomposition method. Four-step fractional step method was used for the solution of the incompressible Navier-Stokes equations and Taylor-Galerkin method was adopted for the discretization of hyperbolic type redistancing and advection equations. A Parallel ILU(0) type preconditioner was chosen to accelerate the convergence of a conjugate gradient type iterative solvers. From the present parallel numerical experiments, it has been shown that the proposed method is applicable to the simulation of large scale free surface flows.

  • PDF

FINITE ELEMENT GALERKIN SOLUTIONS FOR THE STRONGLY DAMPED EXTENSIBLE BEAM EQUATIONS

  • Choo, S.M.;Chung, S.K.;Kannan, R.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.27-43
    • /
    • 2002
  • Finite element Galerkin solutions for the strongly damped extensible beam equations are considered. The semidiscrete scheme and a fully discrete time Galerkin method are studied and the corresponding stability and error estimates are obtained. Ratios of numerical convergence are given.

hp-DISCONTINUOUS GALERKIN METHODS FOR THE LOTKA-MCKENDRICK EQUATION: A NUMERICAL STUDY

  • Jeong, Shin-Ja;Kim, Mi-Young;Selenge, Tsendanysh
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.623-640
    • /
    • 2007
  • The Lotka-McKendrick model which describes the evolution of a single population is developed from the well known Malthus model. In this paper, we introduce the Lotka-McKendrick model. We approximate the solution to the model using hp-discontinuous Galerkin finite element method. The numerical results show that the presented hp-discontinuous Galerkin method is very efficient in case that the solution has a sharp decay.

Elastic-plastic Analysis of a 3-Dimensional Inner Crack Using Finite Element Alternating Method (유한요소 교호법을 이용한 삼차원 내부 균열의 탄소성 해석)

  • Park, Jai-Hak;Park, Sang-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.1009-1016
    • /
    • 2007
  • Finite element alternating method has been suggested and used effectively to obtain the fracture parameters in assessing the integrity of cracked structures. The method obtains the solution from alternating independently between the FEM solution for an uncracked body and the crack solution in an infinite body. In the paper, the finite element alternating method is extended in order to obtain the elastic-plastic stress fields of a three dimensional inner crack. The three dimensional crack solutions for an infinite body were obtained using symmetric Galerkin boundary element method. As an example of a three dimensional inner crack, a penny-shaped crack in a finite body was analyzed and the obtained elastc-plastic stress fields were compared with the solution obtained from the finite element analysis with fine mesh. It is noted that in the region ahead of the crack front the stress values from FEAM are close to the values from FEM. But large discrepancy between two values is observed near the crack surfaces.

A STRESS ANALYSIS FOR A COATED FUEL PARTICLE OF A HTGR USING A FINITE ELEMENT METHOD

  • Kim, Young-Min;Cho, Moon-Sung
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1087-1100
    • /
    • 2009
  • A finite element method utilizing the Galerkin form of the weighted residuals procedure was developed to estimate the mechanical behavior for a coated fuel particle (CFP) of a high temperature gas-cooled reactor (HTGR). Through a weak formulation, finite element equations for multiple layers were set up to calculate the displacements and stresses in a CFP. The finite element method was applied to the stress analyses for three coating layers of a tri-isotropic coated fuel particle (TRISO) of a HTGR. The stresses calculated by the finite element method were in good agreement with those from a previously developed computer code and depicted the typical stress behavior of the coating layers very well. The newly developed finite element method performs a stress analysis for multiple bonded layers in a CFP by changing the material properties at any position in the layers during irradiation.

Study on the Finite Element Discretization of the Level Set Redistancing Algorithm (Level Set Redistancing 알고리즘의 유한요소 이산화 기법에 대한 연구)

  • Kang Sungwoo;Yoo Jung Yul;Lee Yoon Pyo;Choi HyoungGwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.703-710
    • /
    • 2005
  • A finite element discretization of the advection and redistancing equations of level set method has been studied. It has been shown that Galerkin spatial discretization combined with Crank-Nicolson temporal discretization of the advection equation of level set yields a good result and that consistent streamline upwind Petrov-Galerkin(CSUPG) discretization of the redistancing equation gives satisfactory solutions for two test problems while the solutions of streamline upwind Petrov-Galerkin(SUPG) discretization are dissipated by the numerical diffusion added for the stability of a hyperbolic system. Furthermore, it has been found that the solutions obtained by CSUPG method are comparable to those by second order ENO method.

Finite-element Method for Heat Transfer Problem in Hydrodynamic Lubrication

  • Kwang-June,Bai
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.4
    • /
    • pp.19-29
    • /
    • 1982
  • Galerkin's finite element method is applied to a two-dimensional heat convection-diffusion problem arising in the hydrodynamic lubrication of thrust bearings used in naval vessels. A parabolized thermal energy equation for the lubricant, and thermal diffusion equations for both bearing pad and the collar are treated together, with proper juncture conditions on the interface boundaries. it has been known that a numerical instability arises when the classical Galerkin's method, which is equivalent to a centered difference approximation, is applied to a parabolic-type partial differential equation. Probably the simplest remedy for this instability is to use a one-sided finite difference formula for the first derivative term in the finite difference method. However, in the present coupled heat convection-diffusion problem in which the governing equation is parabolized in a subdomain(Lubricant), uniformly stable numerical solutions for a wide range of the Peclet number are obtained in the numerical test based on Galerkin's classical finite element method. In the present numerical convergence errors in several error norms are presented in the first model problem. Additional numerical results for a more realistic bearing lubrication problem are presented for a second numerical model.

  • PDF