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MULTIGRID FOR THE GALERKIN LEAST
SQUARES METHOD IN PLANAR LINEAR
ELASTICITY WITH P1P0 FINITE ELEMENT

JAECHIL YOO

1. Introduction

Let © be a bounded convex polygonal domain in R? and 99 be the
boundary of §2. The pure displacement boundary value problem for
planar linear elasticity is given in the form

>
I 74

(1 20V e(u) + o

u =0 on 9.

VV-ul+ f=0 inQ,

Here u = (uj,u2) denotes the displacement, f = (f1, f2) is the body
force, v is Poisson’s ratio and u is the shear modulus given by p =
E/{2(1 + v)} where F is the Young’s modulus.
We restrict Poisson’s ratio to 0 < v < 1/2 where the upper limit
corresponds to an incompressible material.

Throughout this paper, we use a positive constant C independent of
v, mesh parameter h; and grid level & which may vary from occurrence
to occurrence even in the proof of the same theorem.

We define various standard differential operators as follows, see {3].
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2 2
7= ZZTUn,,, and e(v) = —;— [Vv + (V).

=1 3=1

Let H™(Q) denote the usual Sobolev space of functions with L2(£)
derivatives up to order m. H™({2) is equipped with the norm

2

follgmoy = / Z I(’J“’vl2 dxdy

faj<m

We use the following convention for the Sobolev seminorms:

1
2

[v] gm0y = /Q Z ]8"0|2 dzdy

le|=m

Let H'(Q) = {v € H™(Q) : v|gq = 0}.

It is well known that for f € L*(Q), equation (1) has a unique solu-
tion u € H3(Q) N H(N), see [5].

There is a great deal of literature dealing with approximation schemes
for the equations of linear elasticity. To avoid the locking phenome-
non in linear elasticity problems, there are several different approaches:
nonconforming finite element methods, the methods of reduced/selected
integration, first order least squares methods, and Galerkin least squares
methods. For all of these approaches, mixed finite element methods
involving a pair of finite element spaces are commonly used and we
have to solve large linear systems arising from the finite element dis-
cretizations. With the usual mixed finite element methods, the system
is indefinite and hence the problem poses difficulties.

In recent years, modern iterative methods such as multigrid and do-
main decomposition methods have been applied to mixed finite element
methods. Among those iterative methods, the multigrid method has
been one of the most popular and fastest methods. So we study the
multigrid method to solve the large sparse linear systems derived from
the Galerkin least squares method for the pure displacement boundary
value problem.

It is well-known that one way of driving stabilized mixed finite el-
ement methods is to combine the classical Galerkin formulation with
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least-squares forms of the differential equations. (See [4] and references
therein). An advantage of this method is that the class of finite element
spaces that can be used is considerablely enlarged, hence the methods
are easily incorporated into existing finite element codes. In this paper,
we present a scheme of W-cycle multigrid method to solve the linear
system arising from P1P0 conforming finite element method for the
mixed formulation of the pure displacement boundary value problem
as in {2], [6] and {7]. In {7], Yoo proved the convergence of W-cycle
multigrid methods with PiP3(1 <1, 3) finite element.

This paper is organized as follows. We explain the conforming fi-
nite element method in section 2. We discuss the W-cycle muitigrid
algorithm in section 3 and prove the convergence in section 4

2. The Finite Element Method

For simplicity, we assume that 2u = 1. Let p = —1V . u, where
€ = (1 =2v)/v. Then (1) is equivalent to

—V-e(u)+Vp=f mQ,
(2) ep+V-u=0 in Q,
u =0 on 99.

Hence, we have the following weak formulation
Find (u,p) € H}(2) x L*(Q) such that

(3) st(u) ce(v) dady — /Q(V . v)p dzdy
= Lf v dady, Yv e HY(Q),

f/pq da:dy+f(v-u)q dedy =0, Ygqe L*(Q).
Q 0

Let T* be a family of triangulations of 2, where 751! is obtained
by connecting the midpoints of the edges of the triangles in 7%, Let

hy =diam(T) for each T" € 7% and h; = ma{ﬁi hr, then hy = 2hp 1.
Te
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Now let’s define the conforming finite element spaces for our multigrid
method.

Vi == {v e C°(Q) ; v|r is linear for all T € T* and v|sq = 0}, and
Py = {qe L*() ; qir is a constant for all T € T*}.

Then the discretized Galerkin least squares method for (3} is the following:

Find (ug,px) € Vi x Py such that

@ Bu((werpe), (00,00)) = [ v dady, V(o) € Vi x P
Q
where

By ((Uk, P, (vi, Qk))
:]Qs(uk) s g(vk) dxdy—/ﬂ(v-uk)qk dzdy — fQ(V'vk)Pk dzdy

-8 Y hr < [ml,[al >r —6/ Pigqi dzdy.
Ter* o

Here I'* stands for the collection of the element edges in the interior of
Q, and < -,- > denotes the L%-inner products on T. [p], denotes the
jump in p along T', see {4]. Note that the bilinear form By, is symmetric
and indefinite.

In {4], Franca and Stenberg proved the uniqueness of the solution of the
conforming discretization (4) and derived the following discretization
error estimate:

tu — welmr ) + 0 — Pelze) < Chel fliaoy

and
lu — welz2) < Che’Iflr2c)-



Multigrid for the Galerkin least squares method with P1P0Q 125
3. Multigird Algorithm

In this section, we discuss the W-cycle multigrid algorithm.
In order to define the fine-to-coarse operator / f_l, we introduce the
following mesh-dependent inner product:

((U,P),(v,Q))k = (u,v) 12y + A (P, @) 12(0)-

Then I} ™' : Vi x Py — Vi_1 x Py_ is defined by

(" wp),0), = (@) (v,9),

for all (u,p) € Vi x Py and (v,q) € Vi_1 x Pr_1.
Define Bk : Vk X Pk — Vk X Pk by

(Bu(w.p),(v,0)) = Bi{(w ), 0,00,

for all (u,p), {v,q) € Vi x Px.
LEMMA 1. The spectral radius of By, is at most Chy>.
Proof. See [2].

Because of the result of Lemma 1 and indefiniteness of the system,

the usual iterative methods are not appropriated to solve our linear
system.

The mesh-dependent norms on Vi x P, arc defined as follows

[Pl = [ ((BD2(0,0), () for ll ) € Vi x Py

Note that By is nonsingular and symmetric, hence Bj,? is positive defi-

nite with respect to (-, -)x. Therefore, this norm is well-defined for each
s € R. Moreover,

Iz, ok - \/||u|l L2yt h2 |]p||[2(9) for all (u,p) € Vi x P,

1B (), (0,0) | < WD b2, 9o for all (u,p), (v,9) € Vi x P,
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and

0w, p) 2.k = sup IBk ((u’ P, (v’QJ)l

(v,9)E€ Ve x Pe\{(0,0}} (v, 9)lo.x
for all (u,p) € Vi x Py.
Define PF~: Vi x Pp — Vi_1 x Peo1 by
Bi-s (PE(w,9), (v,0)) = Be (v, ), (v,9))
for all (u,p) € Vi x Pr and (v,q) € Vi—1 X Pr.1.
LEMMA 2. Given w € L%(R), let (ux,pr) € Vi x Px be the solution

of
By ((uk,Pk),(v,Q)) = / w v dxdy, Y(v,q) € Vi x Py
Q

and let (ur—1,px~1) € Vi1 x Px_1 be the solution of
Bk—-l((uk—hpk—l),(v,q)): ] w-v dzdy, V(v,q) € Vi1 X Pes.
Q
Then (uk-1,Pk-1) = PF(ur, pi)-

Proof. Let (ug_1,pr—1)— Py Y ug,px) = (1, 7) € Vi—1 X Pe—1. Then
there exists {¢,£) € Vix_1 x Px_; such that

Bk—l((C:f): (D)Q)) = / n-v dzdy, V(v,q) € Vi1 X Pi_s.
Q
Taking (v,q) = (1, 7), we have
"WH%@(Q) = Bk—l(((aé): (n, T))
= Bk—l(({a{))(uk—l;ﬁc-l)) — Br1 ((C1§)1 Pf_l(uk,Pk))
= Beos ((we-1,9-1), (6,6)) = Bi (s, p0), (€, )

=fw~(d:cdy——/w’(dxdy
Q 1)
= 0.

Since { is continuous, ¢ = 0.

Similarly, we have “’7"%2(9) = 0. Since 7 is a piecewise constant func-
tion, T = 0.
This completes the proof.
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LEMMA 3. Givenw € L3(9), let (ux,pi) € Vi X Px be the solution
of

Be ((wr ) (0,0)) = [ wg dody, Vio,g) € Vi x Py
q K
and let (ug—1,pr—1) € Vi1 X Pg_; be the solution of
Bk—l((uk—lapk—l)a(an)) = / wq dxdy, V(v,q) € Vi—1 X Px_1.
Q

Then ||(wr, pi) — (-1, Px—1)llok < Chfwlrz(qy-

Proof. Note that [(u, pr) — (uk—1,2x-1)I5 5 = lue — w-1}720) +
helpe — pr-1l72(qy- Since w, — up_1 € L*(R2), there exists a unique
solution ((,£) € H () x L%(Q) satisfying

B((6,6).0)) = [ (e = wa) v dody V(w,) € HY() x L9,
Let ({r, &) € Vi X Py be the solution of

Bk((Ck,ﬁk), (v,q)) = /Q(uk ~ ug-1) - v dedy, VY(v,q) € Vi x P
and {Cr_1,&k—1) € Vi1 X Pi_1 be the solution of

Bk—1((Ck—1,§k_1),(v, Q)) = / U — Up—1 v dady, Y(v,q) € Vi) X Pi_;
o

Taking (v, q) = (ux — uk_1,Px — Pk—1), We have
bk —u—1{72(qy = Be ((Ck,fk), (ke Pr) — (uk—vl,Pk—l))
= Bk‘ ((uk}pk)>(<k7€k)) - Bk-l((uk—hpk—l)1 P]f—l(Ck,gk))
= Be((ur, ), (Gir€) ) = B (w1, P-1), (G, €1)
= f w - (x da:dy—/w-(kq dxdy
Q Q
<Jwleaey 16k = Cealrey

< |lw||L2(Q)(|lC = Cellzgy + 1€ — Ck-l“L’(Q))

< ChElwlrzqoy - huk — uk—1lr2 (o).
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Therefore, we have [ux — ui—1112(0) < Chilw]r2q)-
Similarly, we have [px —pe—_1lr2(0) < Chifw]rz(n). This completes the
proof.

LEMMA 4. Given w € L%(0), let (ug, px) € Vi x Pi be the solution
of

Bk((uk:pk)’(”aQ)) = / wq dzdy, ¥(v,q) € Vi x Pk
0
and let (ug_1,pr-1) € Vi1 x Py_ be the solution of
Bk—l((Uk—l,Pk—l),(v,Q)) = / wq dzdy, Y(v,q) € Vi1 X Pe_y.
0

Then {(ur, pr) — (uk—1,Px—1}ox < Chiflwlrz(n)-

Proof. Note that {|(ux,px) — ('U'k-hpk—l)lllg,k = lux — “k—lﬂiz(n) +
hilpx — pk_lﬂ%z(m. Since ux — ux_1 € L?(Q), there exists a unique
solution (¢, £) € HE(Q) x L*() satisfying

B((¢0, (0)) = [ (wk = ueer) v dady W(v,0) € HY) x L),
Let (Ck, &x) € Vi x Py be the solution of
By, ((Cmﬁk)a(%(ﬂ) =/ (ur ~uk-3) - v dedy, Y(v,q) € Vi x By
Q
and (Ck—-l;{k—l) € Vi_1 x Py_1 be the solution of
Bk—l(((:k_l,fk.d), (v,q}) 2/ (uk —uk_l)'v d:cdy, V(v,q) S anlek_l
Q
Taking (v,q) = (uk — ur_1,pr — Pe—1), we have
fux—ur—1l720) = Br ((Ck,ﬁk), (uk, px) — (uk-lapk—l))
= By ((uk,m), (Ck,ﬁk)) = 31:—1((1&&—1,1%»1), P;f_i(Ck,ék))
= Be{ (ks 2, (Grr€6)) = Bro {{usk—1, pr1), (G, E1)

= / wé dxdy — / wép_y dxdy
Q 0
<l - 1x — €r-~1lr2(e)

< ﬂwﬂm(m(“f =&z + 1€ - §k—1“1ﬂ(n))

< Chelwlre (o) - fue — tr—1fr2(0)-
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Therefore, we have
(5) Jur ~ wk—il 20y < Chilw]2qy-

Next, we want to estimate |pr — pr_1]L2(n). By Lemma 3.2 in [4], we
have

(laslracay + (1 + OlIpel3a(a))

‘Bk ((uk,pk), (v, Q)) !
<C sup
(v,@)E€Vi X P\ {(0,0)} (Hvu%{

(M

1) + (1 + €)EQH%2(Q))

dzd
sup fan Tay
(v,9)EV x P\ {(0,0)} 1|<1[|L2(Q)

<~ M
~.

-]
L2 (£2)

IA
Q

Therefore, we have

lueler o) + Mpelzcay < Clwliey and fuc—1{m @) + [pr—ilr2) <
C"w"bz’(g). Thus

Ik — Pr—1l2() < IprlLa) + Ioe-1lr20) < Clwlizq).
ie,
(6) hilpke — pr-1lr2(0) < Chilw]iz(q)-
Hence, combming (5) and (6), we obtain {|(uk, pr) — (2x—1, pr—1)flo.x <
ChifJw]r2(0)-
4. Convergence Analysis

Now we describe the k-th level iteration scheme of the conform-
ing W-cycle multigrid algorithm. The k-th level iteration with initial

iterate (yo, 20} yields CMG (k, {vo, 20), (w,r)) as a conforming approx-

imate solution to the following problem.
Find (y, z) € Vi x Py such that

Bi(y, z) = (w,r), where (w,r)¢€ Vi x P.
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For k = 1, CMG(I,(yo,zO),(w,r)) is the solution obtained from a

direct method.
In other words,

CMG(1, (v0, 20), (w,r)) = (Br) ™, ).

For k > 1, there are two steps. _
Smoothing step : Let (Ym, zm) € Vi X Pk be defined recursively by the
initial iterate (yp, 20) and the equations

1
(v, 21) = (Wi-1,20-1) + PBIC ((w,r) — Bk(yz—1,21—1)), 1<l <m,
%

where Ap = C’h;2 18 greater than or equal to the spectral radius of
By, and mis the number of smoothings.

Correction step : The coarser-grid correction in Vi x P, is obtained
by applying the (k¥ — 1)-th level conforming iteration. More precisely,

(v0,490) = (0,0) and
(vi, ) = OMG(k — 1, (v0, qo). (,7) ) i = 1,2

where (0,7) € Vi_1 x P,_; is defined by (,7) := I,’:"l((w,r) —
Bi(Ym, 2m) )

Then CMG(k, (vo, 20), (w,r)) = (Ym, 2m) + IF_;{v2,q2).

Now we discuss the convergence of the two-grid algorithm where the
residnal equation is solved exactly on the coarser grid. Let the final
output of the two-grid algorithm be

(y*,z*) = (Y, 2m) + (0%, 47)
where (v*,¢") = (B} ) " I ' Bily — Y, 2 — Zm).

LEMMA 5. (v*,6") = PF 'y = Ym> 2 — 2zm).
Proof. See [2]).
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Let the k-th level relaxation operator Ry be defined by
Reo=1I— %(Bk)?
k
Then we have

(Y ~ Ym, 2 — 2m) = Ry — %0,z — 20}, and by Lemma 5,
-y, 22 = - PEHRY(y — v, 2 — 20).

LEMMA 6. Smoothing Step There exists a constant C, inde-
pendent of hy and m, such that

IR (u, P2 < ChT> —=W(w,p)lok, Mu,p) € Vi X Pr.

1
o
Proof. See [2].

LEMMA 7. Approximation Step There exists a constant C,
independent of hy. and m, such that

I = PE ) p)lok < CRZN(w, Pz Murp) € Vi X Pe
Proof.  Let (n,7) = P~ (u,p) for any (u,p) € Vi x Py. Then
(I~ PE N (u,p) = (u—n,p—7) and f(u—1,p—7)3 x = fu—1lZs (o) +
h?c“p - Tll%,z(n)~

Furst, we will estimate Jp—7],2(q) by a duality argument. Let (¢x, ¥x) €
Vi X Py be the solution of

Bk((@k"ﬁz’k))(U;Q)) = fﬂ(p —7)g dzdy, Y(v,q) € Vi x P

and (@k—-1,%k-1) € Vi_1 X Pr_1 be the solution of

Bk—l((@k—ia%bk—l),(v)q)) = /Q(p*T)q dzdy, Y{v,q) € Vi1 X Pr_1.
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Then
b — 71%20) = B[ (0, ¥x), (U,P)) — Bir1 ((wk-l,‘il)k—l), (??,T))

(
= By ((tpk, Vi), (u,p)) - Br_; ((wk—l,d)k—l)a P N, P))
= By (((pk,d)k),(u,p)) — By ((%—1,%—1); (u, P))

= By ((‘Pka¢k) — (Pk—1,¥k-1)> (%P))

< Hoks ) — {Pr—1 Y1) lloxll{w, P2,k
< Chglp — THLz(Q) Hl(u,p)lﬁz‘k by Lemma 4.
Therefore,

(7) Ip — Tle2(e) < Chel(u, P2,k

Next, we want to estimate Ju — nf12(n)- Let (Ck,&k) € Vi X Pi be the
solution of

® (68, 0,9) = [ (wmn) v dady, Vio,g) € Vix P
and (Cr—1,&k-1) € Vk—1 X Pr_; be the solution of
Bk‘——l ((Ck--l ’ fk—l)) (U, Q))

- fn(u-—n) v dzdy, Y(v,q) € Ve—y X Pr-1.
Using (8) and (9), we hwve
fu — 72y = Br ((Ckafk)a (u, P)) — B ((Ck—hﬁk—x), (m T))

= B ((Ck,fk), (u,p)) — Bi_1 ((Ck—lafk—l)v (uap))
< Gk, &) — (Cr—1s Ee—1)lo & 1 (22, Y| 2,%

< Chilu = 2@ (u, )o,xby Lemma 3.
Therefore, we have

(10) lu —nlr20) < CREN(w, Y2k
Hence, combining (7} and (10), we have

(I~ P, plox < CREN(u, PMlz k-

(9)
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THEOREM 1. Convergence of the Two-Grid Algorithm  There
exists a constant C, independent of the number of levels k and the
number of smoothing steps m, such that

by - 57~ Mo < —-fﬁn(y — 30,7 — 20)llo.

Proof. See Lemma 6 and Lemma 7.

THEOREM 2. Convergence of the k-th Level Algorithm  There
exists a constant C, independent of the number of levels k and the
number of smoothing steps m, such that

I(y. z) — CMG(k, (yo, z0}, (w, )Mok < \/%Ill(y — 0,2 — zo)llox-

Proof. See [1].
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