• Title/Summary/Keyword: Gait locomotion

Search Result 62, Processing Time 0.025 seconds

Human Gait-Phase Classification to Control a Lower Extremity Exoskeleton Robot (하지근력증강로봇 제어를 위한 착용자의 보행단계구분)

  • Kim, Hee-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.7
    • /
    • pp.479-490
    • /
    • 2014
  • A lower extremity exoskeleton is a robot device that attaches to the lower limbs of the human body to augment or assist with the walking ability of the wearer. In order to improve the wearer's walking ability, the robot senses the wearer's walking locomotion and classifies it into a gait-phase state, after which it drives the appropriate robot motions for each state using its actuators. This paper presents a method by which the robot senses the wearer's locomotion along with a novel classification algorithm which classifies the sensed data as a gait-phase state. The robot determines its control mode using this gait-phase information. If erroneous information is delivered, the robot will fail to improve the walking ability or will bring some discomfort to the wearer. Therefore, it is necessary for the algorithm constantly to classify the correct gait-phase information. However, our device for sensing a human's locomotion has very sensitive characteristics sufficient for it to detect small movements. With only simple logic like a threshold-based classification, it is difficult to deliver the correct information continually. In order to overcome this and provide correct information in a timely manner, a probabilistic gait-phase classification algorithm is proposed. Experimental results demonstrate that the proposed algorithm offers excellent accuracy.

Locomotion Control of 4 Legged Robot Using HyperNEAT (HyperNEAT를 이용한 4족 보행 로봇의 이동 제어)

  • Jang, Jae-Young;Hyun, Soo-Hwan;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.132-137
    • /
    • 2011
  • The walking mobility with stability of 4 legged robots is the distinguished skills for many application areas. Planning gaits of efficient walking for quadruped robots is an important and challenging task. Especially, autonomous generation of locomotion is required to manage various robot models and environments. In this paper, we propose an adaptive locomotion control of 4 legged robot for irregular terrain using HyperNEAT. Generated locomotion is executed and analysed using ODE based Webots simulation for the 4 legged robot which is built by Bioloid.

바이오센서

  • 홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.109-111
    • /
    • 1989
  • An electrical stimulator was designed to induce locomotion for paraplegic patients caused by central nervous system injury. Optimal stimulus parameters, which can minimize muscle fatigue and can achieve effective muscle contraction were determined in slow and fast muscles in Sprague-Dawley rats. Stimulus patterns of our stimulator were designed to simulate electromyographic activity monitored during locomotion of normal subjects. Muscle types of the lower extremity were classified according to their mechanical property of contraction, which are slow muscle (msoleus m.) and fast muscle (medial gastrocneminus m., rectus femoris m., vastus lateralis m.). Optimal parameters of electrical stimulation for slow muscles were 20 Hz, 0.2 ms square pulse. For fast muscle, 40 Hz, 0.3 ms square pulse was optimal to produce repeated contraction. Higher stimulus intensity was required when synergistic muscles were stimulated simultaneously than when they were stimulated individually. Electrical stimulation for each muscle was designed to generate bipedal locomotion, so that individual muscles alternate contraction and relaxation to simulate stance and swing phases. Portable electrical stimulator with 16 channels built in microprocessor was constructed and applied to paraplegic patients due to lumbar cord injury. The electrical stimulator restored partially gait function in paraplegic patients.

  • PDF

Fault-Tolerant Tripod Gaits Considering Deadlock Avoidance (교착 회피를 고려한 내고장성 세다리 걸음새)

  • 노지명;양정민
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.585-593
    • /
    • 2004
  • Fault-tolerant gait planning in legged locomotion is to design gaits with which legged robots can maintain static stability and motion continuity against a failure in a leg. For planning a robust and deadlock-free fault-tolerant gait, kinematic constraints caused by a failed leg should be closely examined with respect to remaining mobility of the leg. In this paper, based on the authors's previous results, deadlock avoidance scheme for fault-tolerant gait planning is proposed for a hexapod robot walking over even terrain. The considered fault is a locked joint failure, which prevents a joint of a leg from moving and makes it locked in a known position. It is shown that for guaranteeing the existence of the previously proposed fault-tolerant tripod gait of a hexapod robot, the configuration of the failed leg must be within a range of kinematic constraints. Then, for coping with failure situations where the existence condition is not satisfied, the previous fault-tolerant tripod gait is improved by including the adjustment of the foot trajectory. The foot trajectory adjustment procedure is analytically derived to show that it can help the fault-tolerant gait avoid deadlock resulting from the kinematic constraint and does not make any harmful effect on gait mobility. The post-failure walking problem of a hexapod robot with the normal tripod gait is addressed as a case study to show the effectiveness of the proposed scheme.

Effect of an End-effector Type of Robotic Gait Training on Stand Capability, Locomotor Function, and Gait Speed in Individuals with Spastic Cerebral Palsy (엔드 이펙터 타입의 로봇보행훈련이 뇌성마비인의 서기, 보행 기능과 보행속도에 미치는 영향)

  • Hwang, Jongseok
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.3
    • /
    • pp.123-130
    • /
    • 2021
  • PURPOSE: Robotic gait training is being used increasingly to improve the gross motor performance and gait speed. The present study examined the effectiveness of a novel end-effector type of robotic gait training (RGT) system on standing, walking, running, and jumping functions, as well as the gait speed in children with spastic cerebral palsy. METHODS: Eleven children with spastic cerebral palsy Gross Motor Function Classification System (GMFCS) levels I-III (6 males; age range, 15.09 ± 1.44 years) were examined. They underwent 24 sessions (30 minutes/sessions, one time/day, three days/week for eight consecutive weeks) of RGT. The Gross Motor Function Measure-88 D domain (GMFM D), and GMFM E were assessed with a pretest and posttest of RGT. The setting was a one-group pretest-posttest design. RESULTS: A comparison of the pre-test and post-test show that the outcomes in post-test of GMFM D (p < .01), GMFM E (p < .05), and 10MWT were improved significantly after RGT intervention. CONCLUSION: The present study provided the first evidence on the effects of an eight-weeks RGT intervention in participants with spastic CP. The outcomes of this clinical study showed that standing performance, locomotion function, and gait speed increased in after 24 sessions of the end-effector RGT system in children with spastic cerebral palsy.

Analysis of Muscle Force Variation in the Lower Extremity during the Gait (보행 시 발생되는 하지근육의 힘의 변화에 대한 해석)

  • Kim, Young-Eun;Jeon, Eung-Sik
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.261-267
    • /
    • 2000
  • A mathematical model was developed to calculate the muscle force of lower extremity during the gait. We constructed a model of human locomotion, which includes a muscle-skeletal system with 7 segments and 16 lower limb muscles. Using a optimization technique, muscle forces variation of the lower extremity during the gait were generated and its result was verified by comparing a experimental results of EMG analysis. Moreover. the walking movement of the model could be compared quantitatively with those of experimental studies in human by inverse dynamics.

  • PDF

Comparison of Gait Characteristics in Young and Old Persons with GAITRite System Analysis (GAITRite 시스템 분석을 통한 젊은층과 노년층의 보행특성 비교)

  • Hwang-bo, Gak;Jeong, Hak-young;Bae, Sung-soo
    • PNF and Movement
    • /
    • v.1 no.1
    • /
    • pp.33-41
    • /
    • 2003
  • Objectives : The purpose of this study was to describe and compare the temporo-spatial gait characteristics of healthy young people with those of healthy elderly people. Methods: The data were collected by 40 volunteers. 20 subjects were between 20 and 31 years of age, and 20 subjects were between 65 and 84 years of age. Temporal and spatial parameters of gait were analysed for using the computerized GAITRite system. Results : The system integrates specific components of locomotion to provide a single, numerical representation of gait, the Functional Ambulation Performance score. Differences in gait characteristics between the two groups were examined using a correlated t-test(p<.05). Significant differences were observed between the groups for step length, step/extremity ratio and velocity. Young people demonstrated a significantly larger velocity, step length and step/extremity ratio than the elderly people. Conclusions: These results indicate that the GAITRite system can be useful in detecting footfall patterns and selected time and distance measurements of young and older persons. Additionaly, differences in walking velocity, step length and step/extremity ratio between old and young people may have influenced the gait characteristics measured.

  • PDF

Development of Electrical Stimulator for Restoration of Locomotion in Paraplegic Patients (하반신마비 환자에서 보행기능의 복원을 위한 전기자극법의 개발)

  • 박병림;김민선
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.429-438
    • /
    • 1994
  • An electrical stimulator was designed to induce locomotion for paraplegic patients caused by central nervous system injury. Optimal stimulus parameters, which can minimize muscle fatigue and can achieve effective muscle contraction were determined in slow and fast muscles in Sprague-Dawley rats. Stimulus patterns of our stimulator were designed to simulate eleclromyographic activity monitored during locomotion of normal subjects. Muscle types of the lower extremity were classified according to their mechanical property of contraction, which are slow muscle (msoleus m.) and fast muscle (medial gastrocnemius m., rectus femoris m., vastus lateralis m.). Optimal parameters of electrical stimulation for slow muscles were 20 Hz, 0.2 ms square pulse. For fast muscle, 40 Hz, 0.3 ms square pulse was optimal to produce repeated contraction. Higher'stimulus intensity was required when synergistic muscles were stimulated simultaneously than when they were stimulated individually. Electrical stimulation for each muscle was designed to generate bipedal locomotion, so that individual muscles alternate contraction and relaxation to simulate stance and swing phases. Portable electrical stimulator with 16 channels built in microprocessor was constructed and applied to paraplegic patients due to lumbar cord injury. The electrical slimulator restored partially gait function in paraplegic patients.

  • PDF

Effect of Leg Stiffness on the Running Performance of Milli-Scale Six-Leg Crawling Robot with Payload (소형 6족 주행 로봇의 페이로드와 다리 강성이 로봇의 주행 성능에 미치는 영향)

  • Chae, Soo-Hwan;Baek, Sang-Min;Lee, Jongeun;Yim, Sojung;Ryu, Jae-Kwan;Jo, Yong-Jin;Cho, Kyu-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.270-277
    • /
    • 2019
  • Inspired by small insects, which perform rapid and stable locomotion based on body softness and tripod gait, various milli-scale six-legged crawling robots were developed to move rapidly in harsh environment. In particular, cockroach's leg compliance was resembled to enhance the locomotion performance of the crawling robots. In this paper, we investigated the effects of changing leg compliance for the locomotion performance of the small light weight legged crawling robot under various payload condition. First, we developed robust milli-scale six-leg crawling robot which actuated by one motor and fabricated in SCM method with light and soft material. Using this robot platform, we measured the running velocity of the robot depending on the leg stiffness and payload. In result, there was optimal range of the leg stiffness enhancing the locomotion ability at each payload condition in the experiment. It suggests that the performance of the crawling robot can be improved by adjusting stiffness of the legs in given payload condition.

Gait Training Strategy by CPG in PNF with Brain Injured Patients (고유수용성 신경촉진법에서 CPG를 이용한 뇌손상자 보행훈련전략)

  • Bae Sung-soo
    • The Journal of Korean Physical Therapy
    • /
    • v.17 no.1
    • /
    • pp.108-122
    • /
    • 2005
  • The gait training strategy in very important things for central nervous system(CNS) injury patients. There are many method and strategy for regaining of the gait who had CNS injury. A human being has central pattern generator(CPG) is spinal CPG for locomotion. It is a neural network which make the cyclical patterns and rhythmical activities for walking. Sensory input from loading and hip position is essential for CPG stimulation that makes the central neural rhythm and pattern generating structure. From sensory input, the proprioceptive information facilitate proximal muscles that controlled in voluntarily from cortical level and visual and / or acoustical information facilitate distal muscles that controlled voluntarily from subcortical level. Gait training method can classify that is functional level and structural level. Functional level includ level surface gait, going up and down the stair. It is important to facilitate a guide tempo in order to activate the central pattern generators. During the functional test or functional activities, can point out the poor period in gait that have to be facilitate in structural level. There are many access methods with patient position and potentiality. The methods are using of rhythmic initiation, replication and combination of isotonic with standing position. Clinically using it on weight transfer onto the stance leg, loading response, loading response and pre-swing, terminal stance, up and downwards stairs.

  • PDF