• Title/Summary/Keyword: Gain Optimization

Search Result 357, Processing Time 0.025 seconds

Optimal Discrete Systems using Time-Weighted Performance Index with Prescribed Closed-Loop Eigenvalues

  • Gwon, Bong-Hwan;Yun, Myeong-Jung
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.786-790
    • /
    • 1987
  • An optimization problem minimizing n given time-weighted performance index for discrete-time linear multi-input systems is investigated for the prespecified closed-loop eigenvalues. Necessary conditions for an optimality of the controller that satisfies the specified closed-loop eigenvalues are derived. A computational algorithm solving the optimal constant feedback gain is presented and a numerical example is given to show the effect of a time-weighted performance index on the transient responses.

  • PDF

Gain Parameter Determination for the Feeding Speed and Skew Controller of Media Transport System using Optimization Technique (최적화 기법을 적용한 매체 이송 시스템의 이송속도 및 비틀어짐 제어기의 이득값 결정)

  • Cha, Ho-Young;Bum, Sun-Ho;Kim, Min-Soo;Lee, Soon-Geul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.607-613
    • /
    • 2009
  • In this paper, we made a simple paper feeding system which is one of MTS (media transport system) and controllers. The plant has a flexible paper and two driving rollers and two driven rollers. The control system has two conventional PID controllers. Skew angle and feeding speed of MTS deteriorate the quality of feeding system. In order to control a feeding speed and skew of feeding paper, we control rotational velocity of two driving rollers. Therefore, this controller has two inputs and two outputs as MIMO (multi-input and multi-output) system. The control inputs were the feeding speed and the skew displacement of the paper. The control outputs were the rotational velocity to each driving roller. To find appropriate PID gains of two controllers, we proposed an optimization technique. We assume the system variables and performance of a whole system as follows. PID gains of two controllers for skew and feeding speed are system variables. System performance is both skew and feeding speed. We simulates to making mathematical correlation using global Kriging interpolation. To find appropriate value of system variables, optimization method is simulation in sequence as following method. First, the optimization solver simulates with DOE (design of experiment) tables to find correlation equation of both system variable and performances. Then, the solver guesses the appropriate values and simulates if the system variables are appropriate or not. If the result of validation doesn't satisfy the convergence and iteration tolerance, the solver makes a new Kriging models and iterates this sequence until satisfy the tolerances.

Approximate Multi-Objective Optimization of a Quadcopter through Proportional-Integral-Derivative Control (PID 제어를 통한 쿼드콥터 다중목적 근사최적설계)

  • Yoon, Jaehyun;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.673-679
    • /
    • 2015
  • In this study, the nondominated sorting genetic algorithm (NSGA-II) is used to obtain the optimized proportional-integral-derivative (PID) gain value that can quickly recover the motion of a quadcopter after a disturbance. Prior to PID control, the four-rotor quadcopter interval was defined using computational fluid dynamics (CFD). Through the definition of this model, the PID control algorithm was generated. To construct a response surface model, D-optimal programming was used for the generation of experimental points. For this purpose, a gain value that satisfies both the roll and altitude PID gain values is obtained. Using the NSGA-II, the gain value of shorten time of the quadcopter motion control can be optimized.

Optimization of Grating Structures in Complex-Coupled MQW DFB Lasers with Absorptive Gratings (흡수 회절격자를 가지는 복소결합 다중양자우물 DFB 레이저의 회절격자 구조의 최적화)

  • Cho, Sung-Chan;Lee, Dong-Chan;Kim, Boo-Gyoun
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.7
    • /
    • pp.80-91
    • /
    • 1999
  • We present various optimal grating structures which give the low threshold gain, good modulation characteristics, small effective linewidth enhancement factor, and large fabrication tolerance in complex-coupled MQW DFB lasers with absorptive gratings. To obtain these, we calculate the complex coupling coefficients using the extended additional layer method and the threshold gain including the modal loss in the absorptive grating region for rectangular and trapezoidal gratings. Based on the comparison of the results for various possible absorptive grating structures, the design guidelines are presented to obtain the low threshold gain or large fabrication tolerance. Among the grating structures studied, the double grating structure consisting of the absorptive grating on the index grating has the largest fabrication tolerance for the threshold gain and the coupling strength. The fabrication tolerance for the coupling ratio is very large for all the grating structures studied.

  • PDF

Structure optimization of a L-band erbium-doped fiber amplifier for 64 optical signal channels of 50 GHz channel spacing (50 GHz 채널 간격의 64 채널 광신호 전송을 위한 L-band EDFA의 구조 최적화)

  • Choi, Bo-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1666-1671
    • /
    • 2022
  • The structure of a high-power gain-flattened long wavelength band (L-band) optical amplifier was optimized, which was implemented for 64-channel wavelength division multiplexed optical signals with a channel spacing of 50 GHz. The output characteristics of this L-band amplifier were measured and analyzed. The amplifier of the optimized two-stage amplification configuration had a flattened gain of 20 dB within 1 dB deviation between 1570 and 1600 nm for -2 dBm input power condition. The noise figure under this condition was minimized to within 6 dB in the amplification bandwidth. The gain flattening was realized by considering only the characteristics of gain medium in the amplifier without using additional optical or electrical devices. The proposed amplifier consisted of two stages of amplification stages, each of which was based on the erbium-doped fiber amplifier (EDFA) structure. The erbium-doped fiber length and pumping structures in each stage of the amplifier were optimized through experiments.

Performance Evaluation and Optimization of Dual-Port SDRAM Architecture for Mobile Embedded Systems (모바일 내장형 시스템을 위한 듀얼-포트SDRAM의 성능 평가 및 최적화)

  • Yang, Hoe-Seok;Kim, Sung-Chan;Park, Hae-Woo;Kim, Jin-Woo;Ha, Soon-Hoi
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.5
    • /
    • pp.542-546
    • /
    • 2008
  • Recently dual-port SDRAM (DPSDRAM) architecture tailored for dual-processor based mobile embedded systems has been announced where a single memory chip plays the role of the local memories and the shared memory for both processors. In order to maintain memory consistency from simultaneous accesses of both ports, every access to the shared memory should be protected by a synchronization mechanism, which can result in substantial access latency. We propose two optimization techniques by exploiting the communication patterns of target applications: lock-priority scheme and static-copy scheme. Further, by dividing the shared bank into multiple blocks, we allow simultaneous accesses to different blocks thus achieve considerable performance gain. Experiments on a virtual prototyping system show a promising result - we could achieve about 20-50% performance gain compared to the base DPSDRAM architecture.

Optimum Interleaver Design and Performance Analysis of Double-Binary Turbo Code for Wireless Metropolitan Area Networks (WMAN 시스템의 이중 이진 구조 터보부호 인터리버 최적화 설계 및 성능 분석)

  • Park, Sung-Joon
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.1
    • /
    • pp.17-22
    • /
    • 2008
  • Double-binary turbo code has been adopted as an error control code of various future communication systems including wireless metropolitan area networks(WMAN) due to its powerful error correction capability. One of the components affecting the performance of turbo code is internal interleaver. In 802.16 d/e system, an almost regular permutation(ARP) interleaver has been included as a part of specification, however it seems that the interleaver is not optimized in terms of decoding performance. In this paper, we propose three optimization methods for the interleaver based on spatial distance, spread and minimum distance between original and interleaved sequence. We find optimized interleaving parameters for each optimization method and evaluate the performances of the proposed methods by computer simulation under additive white Gaussian noise(AWGN) channel. Optimized parameters can provide up to 1.0 dB power gain over the conventional method and furthermore the obtainable gain does not require any additional hardware complexity.

  • PDF

Optimizing Constant Value Generation in Just-in-time Compiler for 64-bit JavaScript Engine (64-bit 자바스크립트 적시 컴파일러를 위한 상수 값 생성 최적화)

  • Choi, Hyung-Kyu;Lee, Jehyung
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.34-39
    • /
    • 2016
  • JavaScript is widely used in web pages with HTML. Many JavaScript engines adopt Just-in-time compilers to accelerate the execution of JavaScript programs. Recently, many newly introduced devices are adopting 64-bit CPUs instead of 32-bit and Just-in-time compilers for 64-bit CPU are slowly being introduced in JavaScript engines. However, there are many inefficiencies in the currently available Just-in-time compilers for 64-bit devices. Especially, the size of code is significantly increased compared to 32-bit devices, mainly due to 64-bit wide addresses in 64-bit devices. In this paper, we are going to address the inefficiencies introduced by 64-bit wide addresses and values in the Just-in-time compiler for the V8 JavaScript engine and propose more efficient ways of generating constant values and addresses to reduce the size of code. We implemented the proposed optimization in the V8 JavaScript engine and measured the size of code as well as performance improvements with Octane and SunSpider benchmarks. We observed a 3.6% performance gain and 0.7% code size reduction in Octane and a 0.32% performance gain and 2.8% code size reduction in SunSpider.

Multicriteria shape design of a sheet contour in stamping

  • Oujebbour, Fatima-Zahra;Habbal, Abderrahmane;Ellaia, Rachid;Zhao, Ziheng
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.187-193
    • /
    • 2014
  • One of the hottest challenges in automotive industry is related to weight reduction in sheet metal forming processes, in order to produce a high quality metal part with minimal material cost. Stamping is the most widely used sheet metal forming process; but its implementation comes with several fabrication flaws such as springback and failure. A global and simple approach to circumvent these unwanted process drawbacks consists in optimizing the initial blank shape with innovative methods. The aim of this paper is to introduce an efficient methodology to deal with complex, computationally expensive multicriteria optimization problems. Our approach is based on the combination of methods to capture the Pareto Front, approximate criteria (to save computational costs) and global optimizers. To illustrate the efficiency, we consider the stamping of an industrial workpiece as test-case. Our approach is applied to the springback and failure criteria. To optimize these two criteria, a global optimization algorithm was chosen. It is the Simulated Annealing algorithm hybridized with the Simultaneous Perturbation Stochastic Approximation in order to gain in time and in precision. The multicriteria problems amounts to the capture of the Pareto Front associated to the two criteria. Normal Boundary Intersection and Normalized Normal Constraint Method are considered for generating a set of Pareto-optimal solutions with the characteristic of uniform distribution of front points. The computational results are compared to those obtained with the well-known Non-dominated Sorting Genetic Algorithm II. The results show that our proposed approach is efficient to deal with the multicriteria shape optimization of highly non-linear mechanical systems.

Compiler Analysis Framework Using SVM-Based Genetic Algorithm : Feature and Model Selection Sensitivity (SVM 기반 유전 알고리즘을 이용한 컴파일러 분석 프레임워크 : 특징 및 모델 선택 민감성)

  • Hwang, Cheol-Hun;Shin, Gun-Yoon;Kim, Dong-Wook;Han, Myung-Mook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.537-544
    • /
    • 2020
  • Advances in detection techniques, such as mutation and obfuscation, are being advanced with the development of malware technology. In the malware detection technology, unknown malware detection technology is important, and a method for Malware Authorship Attribution that detects an unknown malicious code by identifying the author through distributed malware is being studied. In this paper, we try to extract the compiler information affecting the binary-based author identification method and to investigate the sensitivity of feature selection, probability and non-probability models, and optimization to classification efficiency between studies. In the experiment, the feature selection method through information gain and the support vector machine, which is a non-probability model, showed high efficiency. Among the optimization studies, high classification accuracy was obtained through feature selection and model optimization through the proposed framework, and resulted in 48% feature reduction and 53 faster execution speed. Through this study, we can confirm the sensitivity of feature selection, model, and optimization methods to classification efficiency.