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Abstract 
 
One of the hottest challenges in automotive industry is related to weight reduction in sheet metal forming processes, in order to pro-

duce a high quality metal part with minimal material cost. Stamping is the most widely used sheet metal forming process; but its imple-
mentation comes with several fabrication flaws such as springback and failure. A global and simple approach to circumvent these un-
wanted process drawbacks consists in optimizing the initial blank shape with innovative methods. The aim of this paper is to introduce an 
efficient methodology to deal with complex, computationally expensive multicriteria optimization problems. Our approach is based on 
the combination of methods to capture the Pareto Front, approximate criteria (to save computational costs) and global optimizers. To 
illustrate the efficiency, we consider the stamping of an industrial workpiece as test-case. Our approach is applied to the springback and 
failure criteria. To optimize these two criteria, a global optimization algorithm was chosen. It is the Simulated Annealing algorithm hy-
bridized with the Simultaneous Perturbation Stochastic Approximation in order to gain in time and in precision. The multicriteria prob-
lems amounts to the capture of the Pareto Front associated to the two criteria. Normal Boundary Intersection and Normalized Normal 
Constraint Method are considered for generating a set of Pareto-optimal solutions with the characteristic of uniform distribution of front 
points. The computational results are compared to those obtained with the well-known Non-dominated Sorting Genetic Algorithm II. The 
results show that our proposed approach is efficient to deal with the multicriteria shape optimization of highly non-linear mechanical 
systems. 
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1. Introduction 

The sheet metal forming is of vital importance to a large 
range of industries as production of car bodies, cans, appli-
ances, etc. It generates complex, of high geometrical preci-
sion, parts. However, the associated production technologies 
involve mechanical phenomena combining elastic-plastic 
bending and stretch deformation of the workpiece. These 
deformations can lead to undesirable problems in the target 
shape and performance of the stamped. To perform a suc-
cessful stamping process and avoid the unwanted springback 
and failure defects, process variables should be optimized. 

One of the most important issue in stamping process con-
cerns initial blank shape optimization that can reduce if not 
eliminate design problems of the obtained product [1-5]. 

In general practice, techniques that are used in this optimi-
zation process were based on experiments and trial and error 
method which induce very high costs. Nowadays, growth and 

advances in computer science technologies are proved and 
numerical simulation tools are an efficient alternative, mainly 
making recourse to the finite element method (FEM). 

In this context, several studies had been done to optimize 
forming parameters such as punch speed, blank holder force, 
friction coefficient, etc. [5-7]. Others investigated the optimi-
zation of geometrical parameters such as the radii of the 
punch and the die, the binder surface, etc [8, 9]. More recent-
ly, some studies were performed for the design optimization 
of tools in order to reduce the design time but without con-
sidering the quality of the desired workpiece [10]. 

We aim here to develop a numerical tool for the shape op-
timization of an initial blank in order to reduce springback 
and risk of failure. More precisely, the application targeted by 
this article is to efficiently optimize the initial blank shape 
used in the stamping of an industrial workpiece stamped with 
a cross punch, as presented in section 4. The stamping pro-
cess is performed using the commercial FEA code LS-
DYNA. The criteria considered are springback and failure. 
These two phenomena are the most common problems in the 
stamping process, and they present many difficulties in opti-
mization since they are two conflicting objectives. To solve 
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each single objective optimization problem, the approach 
chosen in section 5.1 was based on the hybridization of a 
heuristic algorithm, the Simulated Annealing (SA) [11], and 
a direct descent method, the Simultaneous Perturbation Sto-
chastic Approximation (SPSA) [12]. This hybridization is 
designed to take advantage from both disciplines, stochastic 
and deterministic, in order to improve the robustness and the 
efficiency of the hybrid algorithm. For the solution of the 
multi-objective problem, we adopt methods based on the 
identification of Pareto front. 

To have a compromise between the convergence towards 
the front and the manner in which the solutions are distribut-
ed, we choose two appropriate methods in section 5.2 which 
are the Normal Boundary Intersection (NBI) [13] and The 
Normalized Normal Constraint Method (NNCM) [14]. These 
methods have the capability to capture the Pareto front and 
have the advantage of generating a set of Pareto-optimal so-
lutions uniformly distributed. The last property is of im-
portant and practical use in the multicriteria optimization of 
non-linear mechanical systems. By reformulating the multi-
objective problem to single-objective sub-problems and only 
with few points, these two methods can form a uniform dis-
tribution of Pareto-optimal solutions, which can help the 
designers and decision makers to select efficient solutions 
among the well represented Pareto front in the design space. 

It is important to notice the necessity of solving the single-
objective sub-problems with global optimization approaches 
whereby we can obtain a global Pareto front, whereas the 
resulting optima using a gradient-based local optimization 
algorithm are only local Pareto-optimal solutions. 

To check the efficiency of these multi-objective approaches, 
numerical examples were used to compare the obtained re-

sults with those obtained with a well-established technique in 
multi-objective optimization called Non-dominated Sorting 
Genetic Algorithm II (NSGAII) [15]. The results of initial 
blank shape optimization of the investigated test case, in or-
der to reduce the springback and the risk of failure, were 
done, and are presented in the end of this section. Finally, a 
conclusion and perspective views are provided in Section 7. 

 
2. Finite element modelling 

Numerical simulation of metal forming processes is cur-
rently one of the most used technological innovations, which 
aim to reduce the high tooling costs, and facilitates the analy-
sis and solution of problems related to the process. 

In this study, the FEA code, LS-DYNA, was used to mod-
el and compute the stamping of an industrial workpiece. LS-
DYNA is an explicit and implicit Finite Element program 
dedicated to the analysis of highly non-linear physical phe-
nomena. 

The aim was to study the influence of the initial blank 
shape on the stamping process of a blank with a cross punch 
(Figure 1). The blank was made of high-strength low-alloy 
steel (HSLA260) and was modelled using Belytschko-Tsay 
shell elements, with full integration points. 

Due to symmetry, only the quarter of the blank, die, punch 
and blank holder were modelled and symmetric boundary 
conditions were applied along the boundary planes. Mechan-
ical properties of materials and process characteristics are 
shown in Table 1. 

 
3. Problem description 

A sensitivity analysis done using FEA demonstrated that 
the overall dimensional quality is highly influenced by the 
initial dimensions of the blank. The initial blank design is a 
critical step in stamping design procedure; therefore it should 
be correctly designed.  

This study aims to find the optimal initial blank shape that 
satisfies the design specifications during the forming process.  
To meet these specifications, it is mandatory to eliminate or 
at least minimize springback and risk of failure problems. 

For this study, the geometry of the blank contour is de-

 
Figure 1. Simulation of stamping process (LS-DYNA). 

Table 1. Process parameters used in simulation. 

Process Parameter Value 

Material HSLA260 

Young’s modulus 196GPa 

Poisson's ratio 0.307 

Density 7750Kg/m3 

Hardening coefficient 0.957 

Punch speed 5m/s 

Punch stroke 30mm 

Blanck holder effort 79250N 

Friction coefficient 0.125 

Number of elements 5775 
 

 
Figure 2. Blank contour parameterization. 
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scribed by parametric spline curves (Figure 2). Seven control 
points (P1...P7) are used to define the spline curves in order 
to have a wide variety of geometries. Some investigated 
shapes are described in Figure 3. 

The maximum allowed variation of each control point is 
equal to 15mm in both axes in order to avoid distorted mesh-
es. 

Due to storage requirements and model complexity, the 
computational cost in sheet metal forming processes is very 
expensive. One usually uses surrogates (approximate func-
tions, also known as metamodels), but the latter are also 
computationally expensive at higher dimensions (of the de-
sign space). Therefore, the building of metamodels is done 
using the sparse grid interpolation. Optimization process 
based on sparse grid interpolation is an optimal alternative in 
which criteria can be approximated with a suitable interpola-
tion formula that needs significantly less points than the full 
grid. 

It is important to notice the potential applicability of sparse 
grids method especially for high dimensional problems. This 
potential was illustrated in several studies [16-20]. The basis 
of all sparse grids is the famous Smolyak’s method [21], 
which provides a construction of interpolation functions with 
a minimum number of points in multi-dimensional space and 
extends adequately the univariate interpolation formulas to 
the multivariate case. The related interpolation algorithms are 
performed in a MATLAB Toolbox based on piecewise multi-
linear and polynomial basis functions. Additional tasks in-
volving the interpolant are used in order to reduce the compu-
tational effort for function evaluations. We used the Sparse 
Grid Toolbox developed by Andreas Klimke [22, 23]. 

 
4. Calculation of criteria 

In sheet metal forming, first the deformation is elastic and 
reversible; then, due to large strain, the linear behaviour is no 
longer valid, so the deformation is plastic. 

     
Figure 4. Simulation of the springback (LS-DYNA). 

 

Figure 3. Examples of initial blank shapes using Spline curves. 
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During this operation, the sheet metal is normally de-
formed to conform to the shape of the tools, except that upon 
unloading, the sheet looks for finding its original geometry 
due to the elastic component of deformation work previously 
stored as potential energy in the sheet. This phenomenon is 
called “Springback”. 

Simulation of springback involves two steps: loading 
(stamping) and unloading. Thus after the simulation of the 
stamping of the investigated workpiece, LS-DYNA generates 
an output file that contains all information about stresses and 
strains upon unloading. Based on this information, LS-
DYNA can simulate the springback by an implicit integration 
scheme. Figure 4 shows a small deflection in the corner of 
the part that represents the springback phenomenon. 

To estimate the springback, first the displacement in the z 
direction of each node is calculated by LS-DYNA after the 
springback simulation and then we extract the maximum 
value of this component for all nodes. Thus, the first objec-
tive function, namely the springback criterion, can be formu-
lated as in Eq. (1). 

 
Φ 	 	 																																																					 1 	

 
where Φ	 is the vector of design parameters,  the total 
number of nodes,  the node number and 	is the dis-
placement in the z direction of the node	 . 

During sheet metal forming, localized deformations lead to 
local defect that appears in the stamped as sheet failure. To 
better characterize this sheet failure, it is first necessary to 
fully understand the formability of the sheet. In this sense, the 
concept of forming limit curve (FLC, see Figure 5) was in-
troduced [24, 25]. It is determined by experimental tests in 
order to separate spaces representing homogeneous and local-
ized strains 

For more reliability, we have considered a safety margin of 
10% (advised to us by our steel industrial partners), which 
allow us to consider the curve below the FLC where cracking 
can start (if values are located beyond this curve). So, this 
curve describes the transition from the safe material behav-
iour to material failure. One of the aims of this study is to 
determine if the material can sustain the strains underneath 
the forming limit curve without failure. 

First, from the strain tensor of each element, we calculated 
the principal strains in the average area. By placing these 
values of principal strains on the same diagram, we see that 
indeed, the elements whose principal strains are placed above 
the forming limit curve failed, we have seen this failure with 
the simulation by LS-DYNA in Figure 6. 

To quantify the safety level of the stamped, we formulated 
the second objective function, namely the failure criterion, as 
Eq. (2). 

 

Φ 	 	 0.9 ∗ 	 																							 2 	

 
The formula above represents the distance between the strain 
of the most critical element  and the corresponding 
strain value in the limit curve  taking into account the 

safety margin that we have considered. 
 

5. Optimization process 

5.1 The SA hybridized with the SPSA method 

Currently, approaches from the hybrid meta-heuristics pre-
sent promising prospects in optimization, in order to have a 
high rate of quality and also precision. We introduce in this 
section a hybrid method that has shown good results. The 
method is based on the simulated annealing (SA) method [8] 

 
Figure 5. Forming limit diagram for HSLA260 steel-sheet. 
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hybridized with simultaneous perturbation stochastic ap-
proximation (SPSA) method [26]. 

The SA algorithm was developed by Kirkpatrick [8] and 
Černý [27]. It simulates the evolution of a heated system 
towards the equilibrium state (optimal configuration), and its 
most used variant, the algorithm of Metropolis [28], aims to 
start from an initial configuration and submit the system to a 
disturbance for each range of the control parameter . If this 
disturbance generates a solution which improves the objec-
tive function , we accept it; if it has the opposite effect, we 
draw a random number between 0 and 1, if this number is 

less than or equal to , we accept the configuration. Thus, 
at high , the majority of moves in the space of configura-
tions are accepted. By reducing progressively , the algo-
rithm allows few solutions optimizing the objective function; 

therefore, for very low ,  is close to 0 and the algo-
rithm rejects the moves that increase the cost function. 

SA has many advantages that distinguish it from other op-
timization algorithms. First, it is a global optimization 
method, easy to program and applicable in several areas, on 
the other hand, it has some shortcomings such as the empiri-
cal regulation of parameters, the excessive calculation time 
and, at low , the acceptance's rate of the algorithm becomes 
too small, so that the method becomes ineffective. Hence the 
idea of coupling the algorithm with a descent method in order 
to reduce the number of objective function evaluations. 

One of the methods which fits the above approach and 
which answers the mentioned requirements is the method 
named simultaneous perturbation stochastic approximation 
(SPSA) [29]. 

It is a method based on gradient approximation from the 
perturbation of the objective function that requires only two 
evaluations of the objective function regardless of optimiza-
tion problem dimension, which accounts for its power and 
relative ease of implementation. 

Let us consider the problem of minimizing a loss function 
 , where  is a m-dimensional vector. The SPSA has the 

general recursive stochastic approximation form as presented 
in Eq. (3). 

 
	 	 																																																									 3 	

 

where  is the estimate of the gradient 	  at 

the iterate . 

This stochastic gradient approximation is calculated by a 
finite difference approximation and a simultaneous perturba-
tion, so that for all  randomly perturbed together we ob-
tain two evaluations of 	 . 

Then, each component of  is a ratio of the differ-
ence between the two corresponding evaluations divided by a 
difference interval following Eq. (4). 

 

	
	 Δ 	 Δ

2 Δ
																					 4 	

 
Here  is a small positive number that gets smaller as  
gets larger and the vector Δ Δ …Δ  a  dimen-

sional random perturbation vector; a simple and generally 
successful choice for each component of Δ  is to use a Ber-

noulli 1 distribution with probability of 	for each 1 

outcome. 
There is a convergence condition which stipulates that 

	and  both go to 0 at rates neither too fast nor too slow, 
and that the cost function is sufficiently smooth near the op-
timum. Convergence is then faster when we approach an 
optimum compared to the random moves of the simulated 
annealing. 

 
Figure 6. Simulation of the failure (LS-DYNA). 

 
  (a)      (b)      (c) 

Figure 7. Springback-Failure Pareto Front: (a) NBI, (b)NNCM, (c) NSGAII. 
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To increase the accuracy of the simulated annealing, we 
need to implement the SPSA after each move minimizing the 
objective function and the Metropolis criterion always gives 
us the possibility to escape from local optima. 

5.2 Multi-objective optimization 

According to the principle established by Pareto, the solu-
tion of a multi-objective function is not unique; it is a set of 
solutions called “Pareto-optimal”. Based on the Pareto’s con-
cept, a solution is Pareto-optimal if it is impossible to im-
prove a component without degrading at least another one. 
The classical approach to solve engineering multiobjective 
problems is to generate an optimal Pareto front, very practical 
and easy to use by engineers, which requires first the capture 
of the Pareto front and second a good visualization of the 
front’s points. This is the aim of these two methods: Normal 
Boundary Intersection (NBI) method [13] and Normalized 
Normal Constrained Method (NNCM) [14]. 

The proposed approaches were compared with the 
NSGAII algorithm, widely used and considered as represen-
tative of the state of the art and a reference algorithm in 
multi-objective optimization in various studies. The obtained 
results prove that the proposed approaches have also good 
performances compared with those obtained with NSGAII. 

 
6. Results of optimization of springback and failure 

It is important to notice that our criteria (springback and 
failure) are not explicit functions. Additionally, the simula-
tion of these two criteria is computationally very expensive. 
The FE model request around 45 min to predict these two 
criteria. However, the obtained metamodels using sparse grid 
interpolation need less than 1s to predict springback and fail-
ure on the same computation machine. To find the optimal 
initial blank shape, it was decided to perform the optimiza-
tion process using the sparse grid metamodel. The construc-
tion of the sparse grid interpolant was based on the Cheby-
shev Gauss-Lobatto grid type and using the polynomial basis 
functions [22, 23]. This technique achieves a good accuracy 
with a competitive number of grid points. 

The SA hybridized with SPSA was applied to minimize 
the corresponding criteria. According to the obtained results, 
the two multi-objective optimization approaches, NBI and 
NNCM, were used to find the set of Pareto optimal solutions 
in the criterion space i.e. springback criteria versus failure 
criteria. The NBI and the NNCM approaches were coupled 
with the SA hybridized with SPSA to obtain global solutions 
in each step of the two approaches. Figure 7 shows the Pareto 
frontier obtained with these two approaches. The same com-
parison was made with the NSGAII and the Pareto-optimal 
solutions are shown in the same Figure. 

These Pareto curves confirm that the trade-off between the 
springback and the failure criterion exists and can help the 
engineers to better understand it. We may notice also that we 
can eliminate springback and reduce the impact of failure by 

optimizing the initial blank shape. The comparison of the 
obtained fronts shows that we can capture Pareto solutions by 
NBI and NNCM with fewer points than NSGAII, which 
requires a large number of populations, and several genera-
tions to obtain the Pareto front. 

 
7. Conclusion and perspectives 

In the present paper, an estimation of the springback and 
the failure of a workpiece are achieved. Considering the 
complexity of finite element models of sheet metal forming, 
of non-linear large scale nature, the simulation and the esti-
mation of these two criteria are very expensive. 

To optimize these criteria, a hybrid approach is investi-
gated to optimize each single-objective problem. This ap-
proach is based on hybridization of SA algorithm, which 
belong to meta-heuristic methods, and SPSA method, which 
is one of descent methods. The advantage of this approach 
was to find the global minimum in few steps. 

The optimization problem in our study is multi-objective 
and criteria are antagonistic, whence the benefit of the NBI 
and the NNCM methods. These two methods have the power 
of generating a set of Pareto-optimal solutions uniformly 
spaced. This advantage was assessed and validated against 
many mathematical well-known benchmarks and success-
fully compared to the results of NSGAII method. Based on 
an accurate approximation of the two criteria using sparse 
grid interpolation method, the obtained Pareto Front of 
springback and failure criteria considering the initial blank 
shape were computed. We compared our results to those 
obtained with NSGAII. The main advantage of our approach 
was the possibility to obtain a Pareto front with few function 
evaluations compared with NSGAII method. In further works, 
we envisage to improve the current algorithms and extend the 
study to innovative approximation methods based on enrich-
ment of metamodels in order to improve the Pareto front in 
each enrichment step and second apply these approaches in 
shape optimization of more complicated workpiece consider-
ing other criteria as wrinkling criterion. 
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