In this paper, an effective intention reading scheme is proposed for human-friendly interface. Soft computing techniques such as fuzzy logic and artificial neural networks are used for this. And Gabor filter based feature(GG feature) is also proposed to deal with local activity in the human face. It is based on human visual system and Gabor filter based approach is very popular in these days. The proposed scheme is adopted for human-friendly interface for rehabilitation service robotic system KARES II.
본 논문은 헤어 뷰티 패션 디자인(Hair Beauty Fashion Design)을 위한 헤어모델과 헤어 얼굴 특징 점을 검출하여 긴 머리, 짧은 머리, 올림머리 등을 연출하는 헤어 라인 검출을 연구한다. 헤어 얼굴은 Gabor 특징에 의하여 지정된 특징 점의 교점 그래프와 공간적 연결을 나타내는 에지 그래프 헤어 모델로 표현한다. 제안된 탄력적 특징 정합은 헤어 모델과 헤어 입력 영상에 상응하는 특징을 취하여 정합 헤어 모델에서 국부적으로 경쟁적이고, 전체적으로 협력적인 헤어 모델 구조를 제시하며, 또 헤어 영상공간에서 불규칙 확산 처리와 같은 역할도 한다. 복잡한 헤어 얼굴 배경이나 헤어 모델 자세의 변화, 그리고 왜곡된 헤어 얼굴 영상에서도 원활하게 동작하는 헤어(얼굴)설계 식별 시스템을 구성함으로서 헤어 라인응용의 방법 등을 탄력적 특징적 정합으로 검출한다.
얼굴 영상 데이터베이스에서 제공하는 눈 좌표에 의존해서 부분 자동 얼굴 인식 알고리즘을 설계 구현하면 실 환경 얼굴 인식 시스템에서는 눈 좌표 추출 알고리즘의 정확도에 따라 인식 성능이 달라질 수 있다. 본 논문에서는 얼굴의 눈, 코, 입 및 윤곽선 정보를 바탕으로 설정한 특징점 기반의 얼굴 모델 그래프를 생성하여 얼굴 영상에 정합시키고 각 특징점에서 Gabor 및 LBP 피쳐를 추출해서 결합하는 방식의 완전 자동 얼굴 인식 알고리즘을 제안하였다. 본 알고리즘에서는 완전 자동으로 얼굴 영상에 얼굴 모델 그래프를 맞출 뿐만 아니라 기존의 Gabor 피쳐에 LBP 피쳐를 추가함으로써 인식 성능을 극대화 시킬 수 있도록 하였다. 제안한 알고리즘을 FERET 데이터베이스에 적용해 본 결과 1,000명 이상의 얼굴을 실시간으로 인식할 수 있었고 각 데이터 집합에 대해서 우수한 인식 성능을 얻을 수 있었다.
눈좌표 검출은 얼굴 인식 및 관련된 응용 분야 등에서 필요한 작업이다. 현재까지 보고된 대부분의 눈좌표 검출 방법은 성공적인 적용을 위해서는 여전히 정확도 및 검출 속도의 개선을 필요로 한다. 본 논문에서는 다중스케일 가버 특징 벡터 모델 기반의 개선된 눈좌표 검출 방법을 제안한다. 제안된 방법은 먼저 다운샘플링된 입력 얼굴 이미지에서 초기 눈좌표에서의 가버 특징 벡터와 해당 스케일의 눈 모델 번치와의 가버젯 유사도를 이용하여 눈좌표를 추정한다. 이후 추정된 눈좌표를 상위 스케일의 얼굴 이미지에서의 눈좌표 초기값으로 취하고 상위 스케일 얼굴 이미지에서 같은 방법으로 눈좌표를 찾으며, 이를 반복적으로 하여 최종적으로 원래 얼굴 이미지에서의 눈좌표를 확정한다. 실험을 통해, 본 논문에서 제안한 다중스케일 가버 특징 벡터 모델 기반 눈좌표 검출 방법이 계산량은 크게 증가시키지 않으면서 기존 연구들에서 보고된 다른 눈좌표 검출 방법에 비해 정확도가 개선된 검출 방법임을 확인하였다.
홍채 인식은 인간의 눈 영상으로부터 고유한 홍채특징을 추출하고 이를 코드화 하여 비교하는 생체인식 기술로, 이것은 시스템 안에 저장된 다른 홍채들과의 비교기술을 포함한다. 한편, 홍채 영상에서의 속눈썹은 인식률에 영향을 미치는 외부 요소인데, 만일 속눈썹이 홍채영역으로부터 정확하게 제거되지 않는다면 속눈썹을 홍채특징으로 인식하거나 홍채특징을 속눈썹으로 인식하는 오인식의 문제가 존재하게 되며, 결국 이 오인식은 홍채정보의 많은 유실을 가져오게 된다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위하여 주파수 특징 분석에 사용되는 Gabor Filter를 이용한 속눈썹 제거로 홍채정보의 보존율 향상을 가져올 수 있었다. Gabor Filter는 영상의 주파수 분석을 위한 필터 중 하나인데 여기에 각도, 주파수, 가우시안 파라미터 등을 이용한 다양한 홍채영역의 특징들을 추출할 수 있는 새로운 방법으로 다양한 길이와 모양의 속눈썹을 정확하게 제거할 수 있었다. 그 결과 제안한 방법은 GMM 혹은 히스토그램 분석을 이용한 기존 방법보다 홍채영역 데이터 보존율에 있어서 약 4% 정도의 향상이 가능하였다.
A Gabor filter is a linear filter used for edge detectionas frequency and orientation representations of Gabor filters are similar to those of the human visual system. In this thesis, we propose a pedestrian detection algorithm using a Gabor filter bank. In order to extract the features of the pedestrian, we use various image processing algorithms and data structure algorithms. First, color image segmentation is performed to consider the information of the RGB color space. Second, histogram equalization is performed to enhance the brightness of the input images. Third, convolution is performed between a Gabor filter bank and the enhanced images. Fourth, statistical values are calculated by using the integral image (summed area table) method. The calculated statistical values are used for the feature matrix of the pedestrian area. To evaluate the proposed algorithm, the INRIA pedestrian database and SVM (Support Vector Machine) are used, and we compare the proposed algorithm and the HOG (Histogram of Oriented Gradient) pedestrian detector, presentlyreferred to as the methodology of pedestrian detection algorithm. The experimental results show that the proposed algorithm is more accurate compared to the HOG pedestrian detector.
This paper proposes a new method of retrieving images from large image databases. The method is based on VQ(Vector Quantization) of local texture information at interest points automatically detected in an image. The texture features are extracted by Gabor wavelet filter bank, and rearranged for rotation. These features are classified by VQ and then construct a pattern histogram. Retrievals are performed by just comparing pattern histograms between images. Experimental results have shown the robustness of the proposed method to image rotation, small scale change, noise addition and brightness change and also shown the possibility of the retrieval by a partial image.
Due to the availability of easy-to-use and powerful image editing tools, the authentication of digital images cannot be taken for granted and it gives rise to non-intrusive forgery detection problem because all imaging devices do not embed watermark. Forgery detection plays an important role in this case. In this paper, an effective framework for passive-blind method for copy-move image forgery detection is proposed, based on Gabor filter which is robust to illumination, rotation invariant, robust to scale. For the detection, the suspicious image is selected and Gabor wavelet is applied from whole scale space and whole direction space. We will extract the mean and the standard deviation as the texture features and feature vectors. Finally, a distance is calculated between two textures feature vectors to determine the forgery, and the decision will be made based on that result.
본 논문에서는 응급상황이 신고되는 상황에서 수보자에게 전달되는 신고자의 주변음향신호로부터 신고자의 주변상황을 추정하기 위하여 음향의 주파수적 특성 및 변화특성의 모델링 성능이 뛰어난 Gabor 필터뱅크 기반의 특징벡터 추출 기술 및 분류 성능이 뛰어난 심화신경망을 도입한다. 제안하는 Gabor 필터뱅크 기반의 특징벡터 추출 기법은 비음성 구간 검출기를 통하여 음성/비음성을 구분한 후에 비음성 구간에서 23차의 Mel-filter bank 계수를 추출한 후에 이로부터 Gabor 필터를 이용하여 주변상황 추정을 위한 특징벡터를 추출하고, 이로부터 학습된 심화신경망을 통하여 신고자의 장소적 정보를 추정한다. 제안된 기법은 여러 가지 시나리오 환경에서 평가되었으며, 우수한 분류성능을 보였다.
본 논문은 Gabor 특징과 FloatBoost 학습을 이용한 효과적인 표정 인식 방법을 제안한다. 제안된 방법은 FloatBoost 알고리즘에 의해 각 표정 단위로 최적의 Gabor 특징을 학습하고 입력 영상으로부터 학습된 각 표정에 대한 Gabor 특징들의 조합을 비교하여 표정을 효과적으로 인식한다. 실험을 통해 제안된 방법의 성능 및 효율성의 우수함을 확인 할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.