• Title/Summary/Keyword: Gabor Feature

Search Result 127, Processing Time 0.022 seconds

Robust Face Recognition based on Gabor Feature Vector illumination PCA Model (가버 특징 벡터 조명 PCA 모델 기반 강인한 얼굴 인식)

  • Seol, Tae-In;Kim, Sang-Hoon;Chung, Sun-Tae;Jo, Seong-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.67-76
    • /
    • 2008
  • Reliable face recognition under various illumination environments is essential for successful commercialization. Feature-based face recognition relies on a good choice of feature vectors. Gabor feature vectors are known to be more robust to variations of pose and illumination than any other feature vectors so that they are popularly adopted for face recognition. However, they are not completely independent of illuminations. In this paper, we propose an illumination-robust face recognition method based on the Gabor feature vector illumination PCA model. We first construct the Gabor feature vector illumination PCA model where Gator feature vector space is rendered to be decomposed into two orthogonal illumination subspace and face identity subspace. Since the Gabor feature vectors obtained by projection into the face identity subspace are separated from illumination, the face recognition utilizing them becomes more robust to illumination. Through experiments, it is shown that the proposed face recognition based on Gabor feature vector illumination PCA model performs more reliably under various illumination and Pose environments.

Fast Gabor Feature Extraction for Real Time Face Recognition (실시간 얼굴인식을 위한 빠른 Gabor 특징 추출)

  • Cho, Kyoung-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.597-600
    • /
    • 2007
  • Face is considered to be one of the biometrics in person identification. But Face recognition is a high dimensional pattern recognition problem. Even low-resolution face images generate huge dimensional feature space. The aim of this paper is to present a fast feature extraction method for real time human face recognition. first, It compute eigen-vector and eigen-value by Principle component analysis on inputed human face image, and propose method of feature extraction that make feature vector by apply gabor filter to computed eigen-vector. And it compute feature value which multiply by made eigen-value. This study simulations performed using the ORL Database.

  • PDF

The Face Recognition Using New Feature Vector Composition from Gabor Reponse and K-L Transform (Gabor 응답에 대한 새로운 특징벡터의 구성과 K-L 변환을 이용한 얼굴인식)

  • 이완수;이형지;정재호
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.33-36
    • /
    • 2001
  • We introduce, in this paper, the face recognition method that improves recognition rate and training time in eigen system. To increase recognition rate we use Gabor filter. To reduce the increasing training time owing to use Gabor filtering, we extract new feature vectors that are made with average and standard deviation. In experimental results, we get higher recognition rate and shorter training time in improved system than it in original eigen system.

  • PDF

Face recognition using Gabor wavelet and Feature weights from Genetic algorithm (Gabor Wavelet과 Genetic Algorithm을 통해 구한 특징점별 가중치를 사용한 얼굴 인식)

  • Jung Eun-sung;Rhee Phill-kyu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.835-837
    • /
    • 2005
  • 본 논문에서는 가보 웨이블릿을 통해 얼굴 이미지로부터 특징을 추출하고, 그에 Genetic Algorithm 을 통해 구한 특징점별 가중치를 적용하여 얼굴 인식을 하는 방법을 소개한다. 각 특징점별로 가중치를 적용하는 방법은, 기존의 Gabor wavelet 을 사용한 얼굴 인식 방법들에 비해 높은 인식률을 보인다. 특징점별 가중치들은 진화 알고리즘을 통해 학습 되어진다.

  • PDF

Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm (Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출)

  • Sin, Yeong Suk
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.1
    • /
    • pp.10-10
    • /
    • 2003
  • This paper extracts the edge of main components of face with Gabor wavelets transformation in facial expression images. FCM(Fuzzy C-Means) clustering algorithm then extracts the representative feature points of low dimensionality from the edge extracted in neutral face. The feature-points of the neutral face is used as a template to extract the feature-points of facial expression images. To match point to Point feature points on an expression face against each feature point on a neutral face, it consists of two steps using a dynamic linking model, which are called the coarse mapping and the fine mapping. This paper presents an automatic extraction of feature-points by dynamic linking model based on Gabor wavelets and fuzzy C-means(FCM) algorithm. The result of this study was applied to extract features automatically in facial expression recognition based on dimension[1].

Rotation-Invariant Texture Classification Using Gabor Wavelet (Gabor 웨이블릿을 이용한 회전 변화에 무관한 질감 분류 기법)

  • Kim, Won-Hee;Yin, Qingbo;Moon, Kwang-Seok;Kim, Jong-Nam
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.9
    • /
    • pp.1125-1134
    • /
    • 2007
  • In this paper, we propose a new approach for rotation invariant texture classification based on Gabor wavelet. Conventional methods have the low correct classification rate in large texture database. In our proposed method, we define two feature groups which are the global feature vector and the local feature matrix. The feature groups are output of Gabor wavelet filtering. By using the feature groups, we defined an improved discriminant and obtained high classification rates of large texture database in the experiments. From spectrum symmetry of texture images, the number of test times were reduced nearly 50%. Consequently, the correct classification rate is improved with $2.3%{\sim}15.6%$ values in 112 Brodatz texture class, which may vary according to comparison methods.

  • PDF

Discolored Metal Pad Image Classification Based on Gabor Texture Features Using GPU (GPU를 이용한 Gabor Texture 특징점 기반의 금속 패드 변색 분류 알고리즘)

  • Cui, Xue-Nan;Park, Eun-Soo;Kim, Jun-Chul;Kim, Hak-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.778-785
    • /
    • 2009
  • This paper presents a Gabor texture feature extraction method for classification of discolored Metal pad images using GPU(Graphics Processing Unit). The proposed algorithm extracts the texture information using Gabor filters and constructs a pattern map using the extracted information. Finally, the golden pad images are classified by utilizing the feature vectors which are extracted from the constructed pattern map. In order to evaluate the performance of the Gabor texture feature extraction algorithm based on GPU, a sequential processing and parallel processing using OpenMP in CPU of this algorithm were adopted. Also, the proposed algorithm was implemented by using Global memory and Shared memory in GPU. The experimental results were demonstrated that the method using Shared memory in GPU provides the best performance. For evaluating the effectiveness of extracted Gabor texture features, an experimental validation has been conducted on a database of 20 Metal pad images and the experiment has shown no mis-classification.

Age of Face Classification based on Gabor Feature and Fuzzy Support Vector Machines (Gabor 특징과 FSVM 기반의 연령별 얼굴 분류)

  • Lee, Hyun-Jik;Kim, Yoon-Ho;Lee, Joo-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.151-157
    • /
    • 2012
  • Recently, owing to the technology advances in computer science and image processing, age of face classification have become prevalent topics. It is difficult to estimate age of facial shape with statistical figures because facial shape of the person should change due to not only biological gene but also personal habits. In this paper, we proposed a robust age of face classification method by using Gabor feature and fuzzy support vector machine(SVM). Gabor wavelet function is used for extracting facial feature vector and in order to solve the intrinsic age ambiguity problem, a fuzzy support vector machine(FSVM) is introduced. By utilizing the FSVM age membership functions is defined. Some experiments have conducted to testify the proposed approach and experimental results showed that the proposed method can achieve better age of face classification precision.

Similarity Measurement using Gabor Energy Feature and Mutual Information for Image Registration

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.693-701
    • /
    • 2011
  • Image registration is an essential process to analyze the time series of satellite images for the purpose of image fusion and change detection. The Mutual Information (MI) is commonly used as similarity measure for image registration because of its robustness to noise. Due to the radiometric differences, it is not easy to apply MI to multi-temporal satellite images using directly the pixel intensity. Image features for MI are more abundantly obtained by employing a Gabor filter which varies adaptively with the filter characteristics such as filter size, frequency and orientation for each pixel. In this paper we employed Bidirectional Gabor Filter Energy (BGFE) defined by Gabor filter features and applied the BGFE to similarity measure calculation as an image feature for MI. The experiment results show that the proposed method is more robust than the conventional MI method combined with intensity or gradient magnitude.

A TRUS Prostate Segmentation using Gabor Texture Features and Snake-like Contour

  • Kim, Sung Gyun;Seo, Yeong Geon
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.103-116
    • /
    • 2013
  • Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound(TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a method for automatic prostate segmentation in TRUS images using Gabor feature extraction and snake-like contour is presented. This method involves preprocessing, extracting Gabor feature, training, and prostate segmentation. The speckle reduction for preprocessing step has been achieved by using stick filter and top-hat transform has been implemented for smoothing the contour. A Gabor filter bank for extraction of rotation-invariant texture features has been implemented. A support vector machine(SVM) for training step has been used to get each feature of prostate and nonprostate. Finally, the boundary of prostate is extracted by the snake-like contour algorithm. A number of experiments are conducted to validate this method and results showed that this new algorithm extracted the prostate boundary with less than 10.2% of the accuracy which is relative to boundary provided manually by experts.