• Title/Summary/Keyword: GaN-on-Si

Search Result 295, Processing Time 0.032 seconds

Study of Thermal Stability of Ni Silicide using Ni-V Alloy

  • Zhong, Zhun;Oh, Soon-Young;Lee, Won-Jae;Zhang, Ying-Ying;Jung, Soon-Yen;Li, Shi-Guang;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok;Kim, Yeong-Cheol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.47-51
    • /
    • 2008
  • In this paper, thermal stability of Nickel silicide formed on p-type silicon wafer using Ni-V alloy film was studied. As compared with pure Ni, Ni-V shows better thermal stability. The addition of Vanadium suppresses the phase transition of NiSi to $NiSi_2$ effectively. Ni-V single structure shows the best thermal stability compared with the other Ni-silicide using TiN and Co/TiN capping layers. To enhance the thermal stability up to $650^{\circ}C$ and find out the optimal thickness of Ni silicide, different thickness of Ni-V was also investigated in this work.

A Study on Contact Resistance Reduction in Ni Germanide/Ge using Sb Interlayer

  • Kim, Jeyoung;Li, Meng;Lee, Ga-Won;Oh, Jungwoo;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.210-214
    • /
    • 2016
  • In this paper, the decrease in the contact resistance of Ni germanide/Ge contact was studied as a function of the thickness of the antimony (Sb) interlayer for high performance Ge MOSFETs. Sb layers with various thickness of 2, 5, 8 and 12 nm were deposited by RF-Magnetron sputter on n-type Ge on Si wafers, followed by in situ deposition of 15nm-thick Ni film. The contact resistance of samples with the Sb interlayer was lower than that of the reference sample without the Sb interlayer. We found that the Sb interlayer can lower the contact resistance of Ni germanide/Ge contact but the reduction of contact resistance becomes saturated as the Sb interlayer thickness increases. The proposed method is useful for high performance n-channel Ge MOSFETs.

Stress Dependence of Thermal Stability of Nickel Silicide for Nano MOSFETs

  • Zhang, Ying-Ying;Lee, Won-Jae;Zhong, Zhun;Li, Shi-Guang;Jung, Soon-Yen;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok;Lim, Sung-Kyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.110-114
    • /
    • 2007
  • Dependence of the thermal stability of nickel silicide on the film stress of inter layer dielectric (ILD) layer has been investigated in this study and silicon nitride $(Si_3N_4)$ layer is used as an ILD layer. Nickel silicide was formed with a one-step rapid thermal process at $500^{\circ}C$ for 30 sec. $2000{\AA}$ thick $Si_3N_4$ layer was deposited using plasma enhanced chemical vapor deposition after the formation of Ni silicide and its stress was split from compressive stress to tensile stress by controlling the power of power sources. Stress level of each stress type was also split for thorough analysis. It is found that the thermal stability of nickel silicide strongly depends on the stress type as well as the stress level induced by the $Si_3N_4$ layer. In the case of high compressive stress, silicide agglomeration and its phase transformation from the low-resistivity nickel mono-silicide to the high-resistivity nickel di-silicide are retarded, and hence the thermal stability is obviously improved a lot. However, in the case of high tensile stress, the thermal stability shows the worst case among the stressed cases.

Fabrication and Characteristics of ZnO TFTs for Flexible Display using Low Temp Process (Flexible Display용 Low Temp Process를 이용한 ZnO TFT의 제작 및 특성 평가)

  • Kim, Young-Su;Kang, Min-Ho;Nam, Dong-Ho;Choi, Kang-Il;Lee, Hi-Deok;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.821-825
    • /
    • 2009
  • Recently, transparent ZnO-based TFTs have attracted much attention for flexible displays because they can be fabricated on plastic substrates at low temperature. We report the fabrication and characteristics of ZnO TFTs having different channel thicknesses deposited at low temperature. The ZnO films were deposited as active channel layer on $Si_3N_4/Ti/SiO_2/p-Si$ substrates by RF magnetron sputtering at $100^{\circ}C$ without additional annealing. Also, the ZnO thin films deposited at oxygen partial pressures of 40%. ZnO TFTs using a bottom-gate configuration were investigated. The $Si_3N_4$ film was deposited as gate insulator by PE-CVD at $150^{\circ}C$. All Processes were processed below $150^{\circ}C$ which is optimal temperature for flexible display and were used dry etching method. The fabricated devices have different threshold slop, field effect mobility and subthreshold slop according to channel thickness. This characteristics are related with ZnO crystal properties analyzed with XRD and SPM. Electrical characteristics of 60 nm ZnO TFT (W/L = $20\;{\mu}m/20\;{\mu}m$) exhibited a field-effect mobility of $0.26\;cm^2/Vs$, a threshold voltage of 8.3 V, a subthreshold slop of 2.2 V/decade, and a $I_{ON/OFF}$ ratio of $7.5\times10^2$.

Photocurrent study on the splitting of the valence band and growth of MgGa2Se4 single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)법에 의한 MgGa2Se4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Kim, Hyejeong;Park, Hwangseuk;Bang, Jinju;Kang, Jongwuk;Hong, Kwangjoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.283-290
    • /
    • 2013
  • A stoichiometric mixture of evaporating materials for $MgGa_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $MgGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by double crystal X-ray diffraction (DCXD). The temperature dependence of the energy band gap of the $MgGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.34 eV-(8.81{\times}10^{-4}eV/K)T^2/(T+251K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $MgGa_2Se_4$ have been estimated to be 190.6 meV and 118.8 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $MgGa_2Se_4$/GaAs epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1^-}$, $B_{1^-}$exciton for n = 1 and $C_{27}-exciton$ peaks for n = 27.

Evaluation of surface gloss of composite resins (복합레진의 표면 광택에 대한 평가)

  • Ji-Eun Byun
    • Journal of Korean Academy of Dental Administration
    • /
    • v.11 no.1
    • /
    • pp.38-46
    • /
    • 2023
  • Composite resins, commonly used in clinical practice, have been developed to improve aesthetics to obtain smooth surfaces. Although the restored composite resin has a smooth surface, it gradually becomes rough over time. Therefore, this study measured glossiness to evaluate the surface of various composite resins and attempted to evaluate the maintenance of glossiness of composite resins by observing surfaces that change to roughness. Specimens were produced using resin used in clinical practice: Gradia direct anterior (GA), Tetric N-Ceram (TN), Ceram.X Sphere TEC one (CX), Filtek Z350XT (FT), Estelite sigma quick (ES). After creating a smooth surface with slide glass, five locations were randomly selected to measure surface gloss, and the average was the representative value of the specimen. Roughness was applied to the specimen under water pouring at the same speed and pressure using SiC paper #2400, 1200, and 400. The gloss unit of different SiC papers was measured. To evaluate the gloss unit and gloss retention between composite resins, one-way analysis of variance and Tukey multiple comparisons test were used. As a result of the study, there was a difference in gloss unit of specimens produced under the same conditions. Although the degree differed depending on the composite resin, there was also a difference in gloss retention. Based on the findings, composite resins show differences in gloss due to their different characteristics. Ceram.X Sphere TEC one (CX) showing the lowest gloss retention and Estelite sigma quick (ES) showing the highest.

Aging effect of Solution-Processed InGaZnO Thin-Film-Transistors Annealed by Conventional Thermal Annealing and Microwave Irradiation

  • Kim, Gyeong-Jun;Lee, Jae-Won;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.211.1-211.1
    • /
    • 2015
  • 최근 용액 공정을 이용한 산화물 반도체에 대한 연구가 활발히 진행되고 있다. 넓은 밴드갭을 가지고 있는 산화물 반도체는 높은 투과율을 가지고 있어 투명 디스플레이에 적용이 가능하다. 기존의 박막 진공증착 방법은 진공상태를 유지하기 위한 장비의 가격이 비싸며, 대면적의 어려움, 높은 생산단가 등으로 생산율이 높지 않다. 하지만 용액 공정을 이용하면 대기압에서 증착이 가능하고 대면적화가 가능하다. 그리고 각각의 조성비를 조절하는 것이 가능하다. 이러한 장점에도 불구하고, 소자의 신뢰성이나 저온공정은 중요한 이슈이다. Instability는 threshold voltage (Vth)의 shift 및 on/off switching의 신뢰성과 관련된 parameter이다. 용액은 소자의 전기적 특성을 열화 시키는 수분 과 탄소계열의 불순물을 다량 포함 하고 있어 고품질의 박막을 형성하기 위해서는 고온의 열처리가 필요하다. 기존의 열처리는 고온에서 장시간 이루어지기 때문에 유리나 플라스틱, 종이 기판의 소자에서는 불가능하지만 $100^{\circ}C$ 이하의 저온 공정인 microwave를 이용하면 유리, 플라스틱, 종이 기판에서도 적용이 가능하다. 본 연구에서는 산화물 반도체 중에서 InGaZnO (IGZO)를 용액 공정으로 제작한 juctionless thin-film transistor를 제작하여 기존의 열처리를 이용하여 처리한 소자와 microwave를 이용해서 열처리한 소자의 전기적 특성을 한 달 동안 관찰 하였다. 또한 In:Zn의 비율을 고정한 후 Ga의 비율을 달리하여 특성을 비교하였다. 먼저 p-type bulk silicon 위에 SiO2 산화막이 100 nm 증착된 기판에 RCA 클리닝을 진행 하였고, solution InGaZnO 용액을 spin coating 방식으로 증착하였다. Coating 후에, solvent와 수분을 제거하기 위해서 $180^{\circ}C$에서 10분 동안 baking공정을 하였다. 이후 furnace열처리와 microwave열처리를 비교하기 위해 post-deposition-annealing (PDA)으로 furnace N2 분위기에서 $600^{\circ}C$에서 30분, microwave를 1800 W로 2분 동안 각각의 샘플에 진행하였다. 또한, HP 4156B semiconductor parameter analyzer를 이용하여 제작된 TFT의 transfer curve를 측정하였다. 그 결과, microwave 열처리한 소자의 경우 기존의 furnace 열처리 소자와 비교하여 높은 mobility, 낮은 hysteresis 값을 나타내었으며, 1달간 소자의 특성을 관찰하였을 때 microwave 열처리한 소자의 경우 전기적 특성이 거의 변하지 않는 것을 확인하였다. 따라서 향후 용액공정, 저온공정을 요구하는 소자 공정에 있어 열처리방법으로 microwave를 이용한 활용이 기대된다.

  • PDF

Research Trends on Chemical Mechanical Polishing Using Ultraviolet Light (자외선 광을 활용하는 화학기계적 연마에 관한 연구 동향)

  • Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.247-254
    • /
    • 2022
  • Chemical mechanical polishing (CMP) is a hybrid surface-polishing process that utilizes both mechanical and chemical energy. However, the recently emerging semiconductor substrate and thin film materials are challenging to process using the existing CMP. Therefore, previous researchers have conducted studies to increase the material removal rate (MRR) of CMP. Most materials studied to improve MRR have high hardness and chemical stability. Methods for enhancing the material removal efficiency of CMP include additional provision of electric, thermal, light, mechanical, and chemical energies. This study aims to introduce research trends on CMP using ultraviolet (UV) light to these methods to improve the material removal efficiency of CMP. This method, photocatalysis-assisted chemical mechanical polishing (PCMP), utilizes photocatalytic oxidation using UV light. In this study, the target materials of the PCMP application include SiC, GaN, GaAs, and Ru. This study explains the photocatalytic reaction, which is the basic principle of PCMP, and reviews studies on PCMP according to materials. Additionally, the researchers classified the PCMP system used in existing studies and presented the course for further investigation of PCMP. This study aims to aid in understanding PCMP and set the direction of future research. Lastly, since there have not been many studies on the tribology characteristics in PCMP, research on this is expected to be required.

Analysis of Thermal Stability and Schottky Barrier Height of Pd Germanide on N-type Ge-on-Si Substrate (N형 Ge-on-Si 기판에 형성된 Pd Germanide의 열안정성 및 Schottky 장벽 분석)

  • Oh, Se-Kyung;Shin, Hong-Sik;Kang, Min-Ho;Bok, Jeong-Deuk;Jung, Yi-Jung;Kwon, Hyuk-Min;Lee, Ga-Won;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.271-275
    • /
    • 2011
  • In this paper, thermal stability of palladium germanide (Pd germanide) is analyzed for high performance Schottky barrier germanium metal oxide semiconductor field effect transistors (SB Ge-MOSFETs). Pd germanide Schottky barrier diodes were fabricated on n-type Ge-on-Si substrates and the formed Pd germanide shows thermal immunity up to $450^{\circ}C$. The barrier height of Pd germanide is also characterized using two methods. It is shown that Pd germanide contact has electron Schottky barrier height of 0.569~0.631 eV and work function of 4.699~4.761 eV, respectively. Pd germanide is promising for the nanoscale Schottky barrier Ge channel MOSFETs.

Alanysis of the Optical Properties of p-type ZnO Thin Films Doped by P based on Ampouele-tube Method (Ampoule-tube 법으로 Phosphorus를 도핑한 P형 ZnO 박막의 광학적 특성 분석)

  • Yoo, In-Sung;Oh, Sang-Hyun;So, Soon-Jin;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.145-146
    • /
    • 2006
  • The most Important research topic in the development of ZnO LED and LD is the production of p-type ZnO thin film that has minimal stress with outstanding stoichiometric ratio. In this study, Phosphorus diffused into the undoped ZnO thin films using the ampoule-tube method for the production of p-type znO thin films. The undoped ZnO thin films were deposited by RF magnetron sputtering system on $GaAs_{0.6}P_{0.4}$/GaP and Si wafers. 4N Phosphorus (P) was diffused into the undoped ZnO thin films in ampoule-tube which was performed and $630^{\circ}C$ during 3hr. We found the diffusion condition of the conductive ZnO films which had p-type properties with the highest mobility of above 532 $cm^2$/Vs compared with other studies PL spectra measured at 10K for the purpose of analyzing optical properties of p-type ZnO thin film showed strong PL intensity in the UV emission band around 365nm ~ 415nm and 365nm ~ 385nm.

  • PDF