• Title/Summary/Keyword: GaN-on-Si

Search Result 295, Processing Time 0.024 seconds

A Study on the Shape of the Pattern Milled Using FIB (집속이온빔 연마에 의한 패턴의 형태에 관한 연구)

  • Jung, Won-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.679-685
    • /
    • 2014
  • For the measurements of surface shape milled using FIB (focused ion beam), the silicon bulk, $Si_3N_4/Si$, and Al/Si samples are used and observed the shapes milled from different sputtering rates, incident angles of $Ga^+$ ions bombardment, beam current, and target material. These conditions also can be influenced the sputtering rate, raster image, and milled shape. The fundamental ion-solid interactions of FIB milling are discussed and explained using TRIM programs (SRIM, TC, and T-dyn). The damaged layers caused by bombarding of $Ga^+$ ions were observed on the surface of target materials. The simulated results were shown a little bit deviation with the experimental data due to relatively small sputtering rate on the sample surface. The simulation results showed about 10.6% tolerance from the measured data at 200 pA. On the other hand, the improved analytical model of damaged layer was matched well with experimental XTEM (cross-sectional transmission electron microscopy) data.

Trends of Power Semiconductor Device (전력 반도체의 개발 동향)

  • Yun, Chong-Man
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.3-6
    • /
    • 2004
  • Power semiconductor devices are being compact, high performance and intelligent thanks to recent remarkable developments of silicon design, process and related packaging technologies. Developments of MOS-gate transistors such as MOSFET and IGBT are dominant thanks to their advantages on high speed operation. In conjunction with package technology, silicon technologies such as trench, charge balance and NPT will support future power semiconductors. In addition, wide band gap material such as SiC and GaN are being studies for next generation power semiconductor devices.

  • PDF

TEM Sample Preparation of Heterogeneous Materials by Tripod Polishing and Their Microstructures (Tripod Polishing을 이용한 불균질 재료의 TEM 시편준비 방법과 미세조직 관찰)

  • Kim, Yeon-Wook;Cho, Myung-Ju
    • Applied Microscopy
    • /
    • v.34 no.2
    • /
    • pp.95-102
    • /
    • 2004
  • The TEM samples prepared by ion milling have the advantage that thin area can be obtained from almost any materials. However, it has the disadvantage that the amount of thin area can often be quite limited. For the cross-sectioned samples and grossly heterogeneous materials, the thickness of less than $0.1{\mu}m$ can be achieved by mechanical grinding and polishing (tripod polisher) and then the TEM samples may be ion-milled for final thinning or cleaning. These approaches were described in this paper. Examples of TEM observations were taken from cross-section samples of thin films on silicon and sapphire, from diffusion layers between $Mo_5Si_3\;and\;Mo_2B$, and from rapidly solidified 304 stainless steel powders embedded in electroplated copper.

Fabrication of Nanostructures by Dry Etching Using Dewetted Pt Islands as Etch-masks (Dewetting된 Pt Islands를 Etch Mask로 사용한 GaN 나노구조 제작)

  • Kim, Taek-Seung;Lee, Ji-Myon
    • Korean Journal of Materials Research
    • /
    • v.16 no.3
    • /
    • pp.151-156
    • /
    • 2006
  • A method for fabrication of nano-scale GaN structure by inductively coupled plasma etching is proposed, exploiting a thermal dewetting of Pt thin film as an etch mask. The nano-scale Pt metal islands were formed by the dewetting of 2-dimensional film on $SiO_2$ dielectric materials during rapid thermal annealing process. For the case of 30 nm thick Pt films, pattern formation and dewetting was initiated at temperatures greater $600^{\circ}C$. Controlling the annealing temperature and time as well as the thickness of the Pt metal film affected the size and density of Pt islands. The activation energy for the formation of Pt metal island was calculated to be 23.2 KJ/mole. The islands show good resistance to dry etching by a $CF_4$ based plasma for dielectric etching indicating that the metal islands produced by dewetting are suitable for use as an etch mask in the fabrication of nano-scale structures.

$N_2$ Gas roles on Pt thin film etching using Ar/$C1_2/N_2$ Plasma (Ar/$C1_2/N_2$플라즈마를 이용한 Pt 박막 식각에서 $N_2$ Gas의 역할)

  • 류재홍;김남훈;이원재;유병곤;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.468-470
    • /
    • 1999
  • One of the most critical problem in etching of platinum was generally known that the etch slope was gradual. therefore, the addition of $N_2$ gas into the Ar/C1$_2$ gas mixture, which has been proposed the optimized etching gas combination for etching of platinum in our previous article, was performed. The selectivity of platinum film to oxide film as an etch mask increased with the addition of N2 gas, and the steeper etch slope over 75 $^{\circ}$ could be obtained. These phenomena were interpreted the results the results of a blocking layer such as Si-N or Si-O-N on the oxide mask. Compostional analysis was carried out by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). Moreover, it could be obtained the higher etch rate of Pt film and steeper profile without residues such as p.-Cl and Pt-Pt ant the addition N\ulcorner of 20 % gas in Ar(90)/Cl$_2$(10) Plasma. The Plasma characteristic was extracted from optical emissionspectroscopy (OES).

  • PDF

Manufacture and characteristic evaluation of Amorphous Indium-Gallium-Zinc-Oxide (IGZO) Thin Film Transistors

  • Seong, Sang-Yun;Han, Eon-Bin;Kim, Se-Yun;Jo, Gwang-Min;Kim, Jeong-Ju;Lee, Jun-Hyeong;Heo, Yeong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.166-166
    • /
    • 2010
  • Recently, TFTs based on amorphous oxide semiconductors (AOSs) such as ZnO, InZnO, ZnSnO, GaZnO, TiOx, InGaZnO(IGZO), SnGaZnO, etc. have been attracting a grate deal of attention as potential alternatives to existing TFT technology to meet emerging technological demands where Si-based or organic electronics cannot provide a solution. Since, in 2003, Masuda et al. and Nomura et al. have reported on transparent TFTs using ZnO and IGZO as active layers, respectively, much efforts have been devoted to develop oxide TFTs using aforementioned amorphous oxide semiconductors as their active layers. In this thesis, I report on the performance of thin-film transistors using amorphous indium gallium zinc oxides for an active channel layer at room temperature. $SiO_2$ was employed as the gate dielectric oxide. The amorphous indium gallium zinc oxides were deposited by RF magnetron sputtering. The carrier concentration of amorphous indium gallium zinc oxide was controlled by oxygen pressure in the sputtering ambient. Devices are realized that display a threshold voltage of 1.5V and an on/off ration of > $10^9$ operated as an n-type enhancement mode with saturation mobility with $9.06\;cm^2/V{\cdot}s$. The devices show optical transmittance above 80% in the visible range. In conclusion, the fabrication and characterization of thin-film transistors using amorphous indium gallium zinc oxides for an active channel layer were reported. The operation of the devices was an n-type enhancement mode with good saturation characteristics.

  • PDF

Ga2O3 Epi Growth by HVPE for Application of Power Semiconductors (전력 반도체 응용을 위한 HVPE법에 의한 Ga2O3 에피성장에 관한 연구)

  • Kang, Ey Goo
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.427-431
    • /
    • 2018
  • This research was worked about $Ga_2O_3$ Epi wafer that was one of the mose wide band gap semiconductors to be used power semiconductor industry. This wafer was grown $5.3{\mu}m$ thickness on Sn doped $Ga_2O_3$ Substrate by HVPE(Hydride Vapor Phase Epitaxy). Generally, we can fabricate 600V class power semiconductor devices when the thickness of compoound power semiconductor is $5{\mu}m$. but in case of $Ga_2O_3$ Epi wafer, we can obtain over 1000V class. As a result of J-V measurment of the grown $Ga_2O_3$ Epi wafer, we obtain $2.9-7.7m{\Omega}{\cdot}cm^2$ on resistance. Specially, in case of reverse, we comfirmed a little leakage current when the reverse voltage is over 200V.

Characterization of epitaxial layers on beta-gallium oxide single crystals grown by EFG method as a function of different crystal faces and off-angle (EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면, off-angle에 따른 epitaxial layer의 특성 분석)

  • Min-Ji Chae;Sun-Yeong Seo;Hui-Yeon Jang;So-Min Shin;Dae-Uk Kim;Yun-Jin Kim;Mi-Seon Park;Gwang-Hee Jung;Jin-Ki Kang;Hae-Yong Lee;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.4
    • /
    • pp.109-116
    • /
    • 2024
  • β-Ga2O3 is a representative ultra-wide bandgap (UWBG) semiconductor that has attracted much attention for power device applications due to its wide-bandgap of 4.9 eV and high-breakdown voltage of 8 MV/cm. In addition, because solution growth is possible, it has advantages such as fast growth rate and lower production cost compared to SiC and GaN [1-2]. In this study, we have successfully grown Si-doped 10 mm thick Si-doped β-Ga2O3 single crystals by the EFG (Edge-defined Film-fed Growth) method. The growth direction and growth principal plane were set to [010] / (010), respectively, and the growth speed was 7~20 mm/h. The as-grown β-Ga2O3 single crystal was cut into various crystal planes (001, 100, ${\bar{2}}01$) and off-angles (1o, 3o, 4o), and then surface processed. After processed, the homoepitaxial layer was grown on the epi-ready substrate using the HVPE (Halide vapor phase epitaxy) method. The processed samples and the epi-layer grown samples were analyzed by XRD, AFM, OM, and Etching to compare the surface properties according to the crystal plane and off-angle.

Simulation Study on the Breakdown Enhancement for InAlAs/InGaAs/GaAs MHEMTs with an InP-Etchstop Layer (InP 식각정지층을 갖는 InAlAs/InGaAs/GaAs MHEMT 소자의 항복 전압 개선에 관한 연구)

  • Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.23-27
    • /
    • 2013
  • This paper is for enhancing the breakdown voltage of MHEMTs with an InP-etchstop layer. Gate-recess structures has been simulated and analyzed for the breakdown of the devices with the InP-etchstop layer. The fully removed recess structure in the drain side of MHEMT shows that the breakdown voltage enhances from 2V to almost 4V and that the saturation current at gate voltage of 0V is reduced from 90mA to 60mA at drain voltage of 2V. This is because the electron-captured negatively fixed charges at the drain-side interface between the InAlAs barrier layer and the $Si_3N_4$ passivation layer deplete the InGaAs channel layer more and thus decreases the electron current passing the channel layer. In the paper, the fully-recessed asymmetric gate-recess structure at the drain side shows the on-breakdown voltage enhancement from 2V to 4V in the MHEMTs.

Characteristics of Sn-doped β-Ga2O3 single crystals grown by EFG method (EFG 법으로 성장한 β-Ga2O3 단결정의 Sn 도핑 특성 연구)

  • Tae-Wan Je;Su-Bin Park;Hui-Yeon Jang;Su-Min Choi;Mi-Seon Park;Yeon-Suk Jang;Won-Jae Lee;Yun-Gon Moon;Jin-Ki Kang;Yun-Ji Shin;Si-Yong Bae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.83-90
    • /
    • 2023
  • The β-Ga2O3 has the most thermodynamically stable phase, a wide band gap of 4.8~4.9 eV and a high dielectric breakdown voltage of 8MV/cm. Due to such excellent electrical characteristics, this material as a power device material has been attracted much attention. Furthermore, the β-Ga2O3 has easy liquid phase growth method unlike materials such as SiC and GaN. However, since the grown pure β-Ga2O3 single crystal requires the intentionally controlled doping due to a low conductivity to be applied to a power device, the research on doping in β-Ga2O3 single crystal is definitely important. In this study, various source powders of un-doped, Sn 0.05 mol%, Sn 0.1 mol%, Sn 1.5 mol%, Sn 2 mol%, Sn 3 mol%-doped Ga2O3 were prepared by adding different mole ratios of SnO2 powder to Ga2O3 powder, and β-Ga2O3 single crystals were grown by using an edge-defined Film-fed Growth (EFG) method. The crystal direction, crystal quality, optical, and electrical properties of the grown β-Ga2O3 single crystal were analyzed according to the Sn dopant content, and the property variation of β-Ga2O3 single crystal according to the Sn doping were extensively investigated.