DOI QR코드

DOI QR Code

A Study on the Shape of the Pattern Milled Using FIB

집속이온빔 연마에 의한 패턴의 형태에 관한 연구

  • Jung, Won-Chae (Department of Electronic Engineering, Kyonggi University)
  • Received : 2014.08.07
  • Accepted : 2014.10.24
  • Published : 2014.11.01

Abstract

For the measurements of surface shape milled using FIB (focused ion beam), the silicon bulk, $Si_3N_4/Si$, and Al/Si samples are used and observed the shapes milled from different sputtering rates, incident angles of $Ga^+$ ions bombardment, beam current, and target material. These conditions also can be influenced the sputtering rate, raster image, and milled shape. The fundamental ion-solid interactions of FIB milling are discussed and explained using TRIM programs (SRIM, TC, and T-dyn). The damaged layers caused by bombarding of $Ga^+$ ions were observed on the surface of target materials. The simulated results were shown a little bit deviation with the experimental data due to relatively small sputtering rate on the sample surface. The simulation results showed about 10.6% tolerance from the measured data at 200 pA. On the other hand, the improved analytical model of damaged layer was matched well with experimental XTEM (cross-sectional transmission electron microscopy) data.

Keywords

References

  1. G. Wilkening and L. Koenders, Nanoscale Calibration Standards and Methods (Wiley-VCH Verlag GmbH & Co., KGaA, 2005) p. 311.
  2. A. A. Tseng, Nanofabrication Fundamentals and Applications (World Scientific, New Jersey, 2008) p. 544.
  3. J. P. Biersack, S. Berg, and C. Nender, Nucl. Instrum. Methods B, 59, 21 (1991).
  4. W. Moller, W. Eckstein, and J. P. Biersack, Comp. Phys. Commun., 51, 355, (1998).
  5. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).
  6. W. Moller and W. Eckstein, Nucl. Insrum. Methods B, 2, 814, (1984). https://doi.org/10.1016/0168-583X(84)90321-5
  7. W. Eckstein, Computer Simulation of Ion-Solid Interactions (Springer, Berlin 1991).
  8. B. I. Prenitzer, C. A. Urbanik-Shannon, L. A. Giannuzzi, S. R. Brown, R. B. Irwin, T. L. Shofner, and F. A. Stevie, Microscopy and Microanalysis, 9, 216 (2003). DOI:10.1017/S1431922760030034
  9. C. Lehrer, L. Frey, M. Mizutani, M. Takai, and H. Ryssel, Ion Implantation Technology Conference (IEEE, Alpbach, 2000) p. 695.
  10. H. Gnaser, A. Brodyanski, and B. Reuscher, Surf. Interface Anal., 40, 1415 (2008). https://doi.org/10.1002/sia.2915
  11. J. P. McCaffrey, M. W. Phaneuf, and L. D. Madsen, Ultramicroscopy, 87, 97 (2001). https://doi.org/10.1016/S0304-3991(00)00096-6
  12. K. S. Ko, W. C. Jung, J. Chung, and L. Rabenberg, Microsc Microanal, 10, 1170 (2004). https://doi.org/10.1017/S1431927604884277
  13. Z. Wang, T. Kato, T. Hirayama, N. Kato, K. Sasaki, and H. Saka, Appl. Surf. Sci., 241, 80 (2005). https://doi.org/10.1016/j.apsusc.2004.09.092
  14. J. Takamatsu, T. Koike, Y. Kato, H. Sunaoshi, and K. Hattori, Jpn. J. Appl. Phys., 35, 6415 (1996). https://doi.org/10.1143/JJAP.35.6415
  15. C. J. Anthony, G. Torricelli, P. D. Prewett, D. Cheneler, C. Binns, and A. Sabouri, J. of Micromech. and Microeng., 21, 1 (2011).
  16. J. Orloff, M. Utlau, and L. Swanson, High Resolution Focused Ion Beams (Kluwer Academic Pub., New York, 2003) p. 205.
  17. Y. Liao, Practical Electron Microscopy and Data Base, 2454 (2007).