• 제목/요약/키워드: GaN surface

검색결과 347건 처리시간 0.029초

The Materials Science of Chalcopyrite Materials for Solar Cell Applications

  • Rockett, Angus
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.53-53
    • /
    • 2011
  • This paper describes results for surface and bulk characterization of the most promising thin film solar cell material for high performance devices, (Ag,Cu) (In,Ga) Se2 (ACIGS). This material in particular exhibits a range of exotic behaviors. The surface and general materials science of the material also has direct implications for the operation of solar cells based upon it. Some of the techniques and results described will include scanning probe (AFM, STM, KPFM) measurements of epitaxial films of different surface orientations, photoelectron spectroscopy and inverse photoemission, Auger electron spectroscopy, and more. Bulk measurements are included as support for the surface measurements such as cathodoluminescence imaging around grain boundaries and showing surface recombination effects, and transmission electron microscopy to verify the surface growth behaviors to be equilibrium rather than kinetic phenomena. The results show that the polar close packed surface of CIGS is the lowest energy surface by far. This surface is expected to be reconstructed to eliminate the surface charge. However, the AgInSe2 compound has yielded excellent atomic-resolution images of the surface with no evidence of surface reconstruction. Similar imaging of CuInSe2 has proven more difficult and no atomic resolution images have been obtained, although current imaging tunneling spectroscopy images show electronic structure variations on the atomic scale. A discussion of the reasons why this may be the case is given. The surface composition and grain boundary compositions match the bulk chemistry exactly in as-grow films. However, the deposition of the heterojunction forming the device alters this chemistry, leading to a strongly n-type surface. This also directly explains unpinning of the Fermi level and the operation of the resulting devices when heterojunctions are formed with the CIGS. These results are linked to device performance through simulation of the characteristic operating behaviors of the cells using models developed in my laboratory.

  • PDF

플라즈마분자선에피탁시법을 이용한 사파이어 기판 위 질화알루미늄 박막의 에피탁시 성장 (Growth of Epitaxial AlN Thin Films on Sapphire Substrates by Plasma-Assisted Molecular Beam Epitaxy)

  • 이효성;한석규;임동석;신은정;임세환;홍순구;정명호;이정용
    • 한국재료학회지
    • /
    • 제21권11호
    • /
    • pp.634-638
    • /
    • 2011
  • We report growth of epitaxial AlN thin films on c-plane sapphire substrates by plasma-assisted molecular beam epitaxy. To achieve two-dimensional growth the substrates were nitrided by nitrogen plasma prior to the AlN growth, which resulted in the formation of a two-dimensional single crystalline AlN layer. The formation of the two-dimensional AlN layer by the nitridation process was confirmed by the observation of streaky reflection high energy electron diffraction (RHEED) patterns. The growth of AlN thin films was performed on the nitrided AlN layer by changing the Al beam flux with the fixed nitrogen flux at 860$^{\circ}C$. The growth mode of AlN films was also affected by the beam flux. By increasing the Al beam flux, two-dimensional growth of AlN films was favored, and a very flat surface with a root mean square roughness of 0.196 nm (for the 2 ${\mu}m$ ${\times}$ 2 ${\mu}m$ area) was obtained. Interestingly, additional diffraction lines were observed for the two-dimensionally grown AlN films, which were probably caused by the Al adlayer, which was similar to a report of Ga adlayer in the two-dimensional growth of GaN. Al droplets were observed in the sample grown with a higher Al beam flux after cooling to room temperature, which resulted from the excessive Al flux.

Development of Thiourea-Formaldehyde Crosslinked Chitosan Membrane Networks for Separation of Cu (II) and Ni (II) Ions

  • Sudhavani, T.J.;Reddy, N. Sivagangi;Rao, K. Madhusudana;Rao, K.S.V. Krishna;Ramkumar, Jayshree;Reddy, A.V.R.
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권5호
    • /
    • pp.1513-1520
    • /
    • 2013
  • Novel chitosan (CS) based membrane networks were developed by solution casting and followed by crosslinking with different crosslinkers such as glutaraldehyde, urea-formaldehyde, and thiourea-formaldehyde. The developed membrane networks were designated as CS-GA, CS-UF and CS-TF. Crosslinking reaction of CS membranes was confirmed by Fourier transform infrared spectroscopy. Membrane rigidity and compactness were studied by the differential scanning calorimetry. The surface morphology of CS membranes was characterized by scanning electron microscopy. The sorption behaviour with respect to contact time, initial pH and initial metal ion concentration were investigated. The maximum adsorption capacity of CS-GA, CS-UF and CS-TF sorbents was found to be 1.03, 1.2 and 1.18 mM/g for $Cu^{2+}$ and 1.48, 1.55 and 2.18 mM/g for $Ni^{2+}$ respectively. Swelling experiments have been performed on the membrane networks at $30^{\circ}C$. Desorption studies were performed in acid media and EDTA and it was found that the membranes are reusable for the metal ion removal for three cycles. The developed membranes could be successfully used for the separation of $Cu^{2+}$ and $Ni^{2+}$ metal ions from aqueous solutions.

자외선 광을 활용하는 화학기계적 연마에 관한 연구 동향 (Research Trends on Chemical Mechanical Polishing Using Ultraviolet Light)

  • 이현섭
    • Tribology and Lubricants
    • /
    • 제38권6호
    • /
    • pp.247-254
    • /
    • 2022
  • Chemical mechanical polishing (CMP) is a hybrid surface-polishing process that utilizes both mechanical and chemical energy. However, the recently emerging semiconductor substrate and thin film materials are challenging to process using the existing CMP. Therefore, previous researchers have conducted studies to increase the material removal rate (MRR) of CMP. Most materials studied to improve MRR have high hardness and chemical stability. Methods for enhancing the material removal efficiency of CMP include additional provision of electric, thermal, light, mechanical, and chemical energies. This study aims to introduce research trends on CMP using ultraviolet (UV) light to these methods to improve the material removal efficiency of CMP. This method, photocatalysis-assisted chemical mechanical polishing (PCMP), utilizes photocatalytic oxidation using UV light. In this study, the target materials of the PCMP application include SiC, GaN, GaAs, and Ru. This study explains the photocatalytic reaction, which is the basic principle of PCMP, and reviews studies on PCMP according to materials. Additionally, the researchers classified the PCMP system used in existing studies and presented the course for further investigation of PCMP. This study aims to aid in understanding PCMP and set the direction of future research. Lastly, since there have not been many studies on the tribology characteristics in PCMP, research on this is expected to be required.

Si, Mn함유 IF 고강도강의 소둔거동 및 도금특성에 미치는 이슬점 온도의 영향 (Effect of Dewpoints on Annealing Behavior and Coating Characteristics in IF High Strength Steels Containing Si and Mn)

  • 전선호;신광수;손호상;김대룡
    • 대한금속재료학회지
    • /
    • 제46권7호
    • /
    • pp.427-436
    • /
    • 2008
  • The effect of dewpoints on annealing behavior and coating characteristics such as wettability and galvannealing kinetics was studied by annealing 0.3wt%Si - 0.1~0.4wt% Mn added interstitial-free high strength steels(IF-HSS). The 0.3wt%Si-0.1wt%Mn steel exhibited good wettability with molten zinc and galvannealing kinetics after annealing when the dewpoint of $H_2-N_2$ mixed gas was above $-20^{\circ}C$. It is shown that the wettability and galvannealing kinetics are directly related to the coverage of the external(surface) oxide formed by selective oxidation during annealing. At $N_2-15%H_2$ annealing atmosphere, the increase of dewpoint results in a gradual transition from external to internal selective oxidation. The decrease of external oxidation of alloying elements with a concurrent increase of their subsurface enrichment in the substrate, showing a larger surface area that was free of oxide particles, contributed to the improved wettability and galvannealing kinetics. On the other hand, the corresponding wettability and galvannealing kinetics were deteriorated with the dewpoints below $-20^{\circ}C$. The continuous oxide layer of network and/or film type was formed on the steel surface, leading to the poor wettability and galvannealing kinetics. It causes a high contact angle between annealed surface and molten zinc and plays an interrupting role in interdiffusion of Zn and Fe during galvannealing process.

N2와 NH3 반응성가스를 사용하여 마그네트론 스퍼터링법으로 제작한 AlN박막의 특성 (Characteristics of AlN Thin Films by Magnetron Sputtering System Using Reactive Gases of N2 and NH3)

  • 한창석
    • 한국재료학회지
    • /
    • 제25권3호
    • /
    • pp.138-143
    • /
    • 2015
  • Aluminum nitride, a compound semiconductor, has a Wurtzite structure; good material properties such as high thermal conductivity, great electric conductivity, high dielectric breakdown strength, a wide energy band gap (6.2eV), a fast elastic wave speed; and excellent in thermal and chemical stability. Furthermore, the thermal expansion coefficient of the aluminum nitride is similar to those of Si and GaAs. Due to these characteristics, aluminum nitride can be applied to electric packaging components, dielectric materials, SAW (surface acoustic wave) devices, and photoelectric devices. In this study, we surveyed the crystallization and preferred orientation of AlN thin films with an X-ray diffractometer. To fabricate the AlN thin film, we used the magnetron sputtering method with $N_2$, NH3 and Ar. According to an increase in the partial pressures of $N_2$ and $NH_3$, Al was nitrified and deposited onto a substrate in a molecular form. When AlN was fabricated with $N_2$, it showed a c-axis orientation and tended toward a high orientation with an increase in the temperature. On the other hand, when AlN was fabricated with $NH_3$, it showed a-axis orientation. This result is coincident with the proposed mechanism. We fabricated AlN thin films with an a-axis orientation by controlling the sputtering electric power, $NH_3$ pressure, deposition speed, and substrate temperature. According to the proposed mechanism, we also fabricated AlN thin films which demonstrated high a-axis and c-axis orientations.

Strained Si를 만들기 위한 SiGe layer 형성에 temperature, $GeH_4$ gas pre-flow, gas ratio가 미치는 영향 (Effect of temperature, $GeH_4$ gas pre-flow, gas ratio on formation of SiGe layer for strained Si)

  • 안상준;이곤섭;박재근
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.60-60
    • /
    • 2003
  • 디자인 룰에 의해 Gate Length 가 100nm 이하로 줄어듦에 따라 Gate delay 감소와 Switch speed 향상을 위해 보다 더 큰 drive current 를 요구하게 되었다. 본 연구는 dirve current 를 증가시키기 위해 고안된 Strained Si substrate 를 만들기 위한 SiGe layer 성장에 관한 연구이다. SiGe layer를 성장시킬 때 SiH$_4$ gas와 GeH$_4$ gas를 furnace에 flow시켜 Chemical 반응에 의해 Si Substrate를 성장시키는 LPCVD(low pressure chemical vapor depositio)법을 사용하였고 SIMS와 nanospec을 이용하여 박막 두께 및 Ge concentration을 측정하였고, AFM으로 surface의 roughness를 측정하였다. 본 연구에서 우리는 10,20,30,40%의 Ge concentration을 갖는 10nm 이하의 SiGe layer를 얻기 위하여 l0nm 이하의 fixed 된 두께로 SiGe layer를 성장시킬 때 temperature, GeH$_4$ gas pre-flow, SiH$_4$ 와 GeH$_4$의 gas ratio를 변화시켜 성장시킨 후 Ge 의 concentration과 실제 형성된 두께를 측정하였고, SiGe의 mole fraction의 변화에 따른 surface의 roughness 를 측정하였다. 그 결과 10 nm의 두께에서 temperature, GeH$_4$ gas pre-flow, SiH$_4$ 와 GeH$_4$ 의 gas ratio의 변화와 Ge concentration 과의 의존성을 확인 할 수 있었고, SiGe 의 mole traction이 증가하였을 때 surfcace의 roughness 가 증가함을 알 수 있었다. 이 연구 결과는 strained Si 가 가지고 있는 strained Si 내에서 n-FET 와 P-FET사이의 불균형에 대한 해결과 좀 더 발전된 형태인 fully Depleted Strained Si 제작에 기여할 것으로 보인다.

  • PDF

Buried-Ridge Waveguide Laser Diode 제작 및 특성평가 (Fabrication and characterization of InGaAsP/InP multi-quantum well buried-ridge waveguide laser diodes)

  • 오수환;이지면;김기수;이철욱;고현성;박상기
    • 한국광학회지
    • /
    • 제14권6호
    • /
    • pp.669-673
    • /
    • 2003
  • 본 연구에서는 기존의 ridge waveguide laser diode(RWG LD)보다 ridge폭에 따른 측방향 단일모드 특성이 우수하고 planar 화에 유리하며 측방향의 유효 굴절률차를 ridge 구조에 추가로 성장된 InGaAsP층의 두께로 조절이 가능한 Buried RWG LD를제작하였다. 본 연구에서는 Buried RWG LD를 CBE장치로 InGaAs/InGaAsP multiple quantum well(MQW) 에피 웨이퍼를 성장하고, LPE로 재성장하여 B-RWG LD를 제작하였다. 또한 ridge 폭을 5 $\mu\textrm{m}$와 7 $\mu\textrm{m}$로 하여 B-RWG LD를 제작하고 특성을 비교하여 보았다. 제작된 7 $\mu\textrm{m}$ B-RWG LD에서 광출력이 20㎽에 이를 때까지 고차모드 발진에 의한 kink현상이 일어나지 않았으며, 포화 광출력이 80 ㎽ 이상임을 확인하였다. 제작된 B-RWG LD가 측방향 단일모드로 동작함을 확인하기 위해 FFP을 측정한 결과, ridge 폭이 5 $\mu\textrm{m}$일 때는 2.7I$_{th}$ , ridge 폭이 7 $\mu\textrm{m}$일 때는 2.4I$_{th}$ 까지 단일모드로 동작함을 확인할 수 있다.

기상청 기후예측시스템 개선에 따른 월별 앙상블 예측자료 성능평가 (Performance Assessment of Monthly Ensemble Prediction Data Based on Improvement of Climate Prediction System at KMA)

  • 함현준;이상민;현유경;김윤재
    • 대기
    • /
    • 제29권2호
    • /
    • pp.149-164
    • /
    • 2019
  • The purpose of this study is to introduce the improvement of current operational climate prediction system of KMA and to compare previous and improved that. Whereas the previous system is based on GloSea5GA3, the improved one is built on GloSea5GC2. GloSea5GC2 is a fully coupled global climate model with an atmosphere, ocean, sea-ice and land components through the coupler OASIS. This is comprised of component configurations Global Atmosphere 6.0 (GA6.0), Global Land 6.0 (GL6.0), Global Ocean 5.0 (GO5.0) and Global Sea Ice 6.0 (GSI6.0). The compositions have improved sea-ice parameters over the previous model. The model resolution is N216L85 (~60 km in mid-latitudes) in the atmosphere and ORCA0.25L75 ($0.25^{\circ}$ on a tri-polar grid) in the ocean. In this research, the predictability of each system is evaluated using by RMSE, Correlation and MSSS, and the variables are 500 hPa geopotential height (h500), 850 hPa temperature (t850) and Sea surface temperature (SST). A predictive performance shows that GloSea5GC2 is better than GloSea5GA3. For example, the RMSE of h500 of 1-month forecast is decreased from 23.89 gpm to 22.21 gpm in East Asia. For Nino3.4 area of SST, the improvements to GloSeaGC2 result in a decrease in RMSE, which become apparent over time. It can be concluded that GloSea5GC2 has a great performance for seasonal prediction.

초고강도강판의 마찰특성에 관한 연구 (Study on the Friction Characteristics of Advanced High Strength Steel Sheet)

  • 김남진;김상헌;정경환;박성호;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.250-253
    • /
    • 2009
  • In this study, the friction test was performed to find friction characteristics of advanced high strength steel (AHSS) sheets and the multiple regression method was employed to obtain friction models. The friction coefficients associated with the lubricant viscosity, drawing speed, and blank holding pressure are measured. Differently from GA steel sheets, the effects of the lubricant viscosity and pulling speed are a little, which are explained by a theory of adhesion and wear as well as a deformation of friction surface. In addition, the effects of friction parameters are numerically represented by friction regression models.

  • PDF