DOI QR코드

DOI QR Code

Characteristics of AlN Thin Films by Magnetron Sputtering System Using Reactive Gases of N2 and NH3

N2와 NH3 반응성가스를 사용하여 마그네트론 스퍼터링법으로 제작한 AlN박막의 특성

  • Han, Chang-Suk (Dept. of Defense Science & Technology, Hoseo University)
  • 한창석 (호서대학교 국방과학기술학과)
  • Received : 2015.02.02
  • Accepted : 2015.02.26
  • Published : 2015.03.27

Abstract

Aluminum nitride, a compound semiconductor, has a Wurtzite structure; good material properties such as high thermal conductivity, great electric conductivity, high dielectric breakdown strength, a wide energy band gap (6.2eV), a fast elastic wave speed; and excellent in thermal and chemical stability. Furthermore, the thermal expansion coefficient of the aluminum nitride is similar to those of Si and GaAs. Due to these characteristics, aluminum nitride can be applied to electric packaging components, dielectric materials, SAW (surface acoustic wave) devices, and photoelectric devices. In this study, we surveyed the crystallization and preferred orientation of AlN thin films with an X-ray diffractometer. To fabricate the AlN thin film, we used the magnetron sputtering method with $N_2$, NH3 and Ar. According to an increase in the partial pressures of $N_2$ and $NH_3$, Al was nitrified and deposited onto a substrate in a molecular form. When AlN was fabricated with $N_2$, it showed a c-axis orientation and tended toward a high orientation with an increase in the temperature. On the other hand, when AlN was fabricated with $NH_3$, it showed a-axis orientation. This result is coincident with the proposed mechanism. We fabricated AlN thin films with an a-axis orientation by controlling the sputtering electric power, $NH_3$ pressure, deposition speed, and substrate temperature. According to the proposed mechanism, we also fabricated AlN thin films which demonstrated high a-axis and c-axis orientations.

Keywords

References

  1. M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, Properties of Advanced Semiconductor Materials; GaN, AlN, InN, BN and SiGe, John Wiley and Sons, NewYork (2002).
  2. D. Gaspera, E. Buso, D. Guglielmi, M. Martucci, A. Bello, V. Mattei, G. Post, M. L. Cantalini, C. Agnoli, S. Granozzi, G. Sadek, A. Z. Kalantar-zadeh and K. Wlodarski, Sens. Actuators B, 143, 567 (2010). https://doi.org/10.1016/j.snb.2009.09.060
  3. Y. J. Yong, and J. Y. Lee, J. Vac. Sci. Technol. A, 15, 390 (1997). https://doi.org/10.1116/1.580496
  4. D. Y. Wang, Y. Nagahata, M. Masuda, and Y. Hayashi, J. Vac. Sci. Technol. A, 14, 3092 (1996). https://doi.org/10.1116/1.580177
  5. T. Hsiosaki, K. Harada, and A. Kawabata, Jpn. J. Appl. Phys., 21, 69 (1982). https://doi.org/10.7567/JJAPS.21S3.69
  6. J. H. Bang, D. H. Chang, S. J. Kang, D. G. Kim, and Y. S. Yoon, J. Inst. Electro. Engi. Kor. SD, 43, 1 (2006).
  7. J. Yang, C. Wang, X. Yan, K. Too, B. Lin, and Y. Fan, Appl. Phys. Lett., 62, 2790 (1993). https://doi.org/10.1063/1.109210
  8. H. Takikawa, N. Kawakami, and T. Skakibara, Surf. Coat. Tech., 120-121, 383 (1999). https://doi.org/10.1016/S0257-8972(99)00389-8
  9. M. Ishihara, H. Yumoto, T. Tsuchiya, and K. Akashi, Thin Solid Films, 281-283, 321 (1996).
  10. M. Ishihara, S. J. Li, H. Yumoto, K. Akashi, and Y. Ide, Thin Solid Films, 316, 152 (1998). https://doi.org/10.1016/S0040-6090(98)00406-4
  11. F. Takeda, R. Takihashi, and T. Mori, Trans. IECE, 101-A, 483 (1980).
  12. F. Takeda, T. Mori, and T. Takahashi, Jpn. J. Appl. Phys., 20-3, 169 (1981).
  13. C. S. Oh and C. S. Han, Korean J. Met. Mater., 50, 78 (2012). https://doi.org/10.3365/KJMM.2012.50.1.078
  14. T. Shiosaki, T. Yamamoto, T. Oda, K. Harada, and A. Kawabata, Jpn. J. Appl. Phys., 20-3, 149 (1981).