• Title/Summary/Keyword: GaN power semiconductor

Search Result 99, Processing Time 0.026 seconds

A Study on the Simulation of AlGaN/GaN HEMT Power Devices (AlGaN/GaN HEMT 전력소자 시뮬레이션에 관한 연구)

  • Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.55-58
    • /
    • 2014
  • The next-generation AlGaN/GaN HEMT power devices need higher power at higher frequencies. To know the device characteristics, the simulation of those devices are made. This paper presents a simulation study on the DC and RF characteristics of AlGaN/GaN HEMT power devices. According to the reduction of gate length from $2.0{\mu}m$ to $0.1{\mu}m$, the simulation results show that the drain current at zero gate voltage increases, the gate capacitance decreases, and the maximum transconductance increases, and thus the cutoff frequency and the maximum oscillation frequency increase. The maximum oscillation frequency maintains higher than the cutoff frequency, which means that the devices are useful for power devices at very high frequencies.

Enhanced optical output power of AlGaN/GaN ultraviolet light-emitting diodes fabricated with breakdown induced conductive channels

  • Seonghoon Jeong;Sung-Nam Lee;Chel-Jong Choi;Hyunsoo Kim
    • Journal of Ceramic Processing Research
    • /
    • v.21
    • /
    • pp.23-27
    • /
    • 2020
  • The enhanced optical output power of AlGaN/GaN deep ultraviolet light-emitting diodes (UV LEDs) were demonstrated by using the breakdown-induced conductive channels (BICCs). The BICCs could be made by electrical reverse biasing between two adjacent contact pads formed on top p-type layers with a certain distance, causing an electrical breakdown of pn junction and hence a generation of conductive channels. Accordingly, the reflective Ni/Ag/Pt electrodes could be formed simultaneously on the top p-type layer and the other p-type layer with the BICCs, acting as the p- and n-contacts, respectively. The deep UV LEDs fabricated with the BICCs produced the enhanced optical output power by 15 % as compared to the reference LEDs, which were fabricated with the conventional Ti/Al/Ti/Au layers formed on mesa-etched n-type layer. This could be due to the reduced light absorption at the n-contact pads, indicating that the use of BICCs will be very suitable for obtaining better output performance of deep UV emitters.

Efficiency Characteristics of DC-DC Boost Converter Using GaN, Cool MOS, and SiC MOSFET (GaN, Cool MOS, SiC MOSFET을 이용한 DC-DC 승압 컨버터의 효율 특성)

  • Kim, Jeong Gyu;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.49-54
    • /
    • 2017
  • In this paper, recent researches on new and renewable energy have been conducted due to problems such as energy exhaustion and environmental pollution, and new researches on high efficiency and high speed switching are needed. Therefore, we compared the efficiency by using high speed switching devices instead of IGBT which can't be used in high speed switching. The experiment was performed theoretically by applying the same parameters of the high speed switching devices which are the Cool MOS of Infineon Co., SiC C3M of Cree, and GaN FET device of Transform, by implementing the DC-DC boost converter and measuring the actual efficiency for output power and frequency. As a result, the GaN FET showed good efficiency at all switching frequency and output power.

  • PDF

Study on Modeling of GaN Power FET (GaN Power FET 모델링에 관한 연구)

  • Kang, Ey-Goo;Chung, Hun-Suk;Kim, Beum-Jun;Lee, Young-Hun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.51-51
    • /
    • 2009
  • In this paper, we proposed GaN trench Static Induction Transistor(SIT). Because The compound semiconductor had superior thermal characteristics, GaN and SiC power devices is next generation power semiconductor devices. We carried out modeling of GaN SIT with 2-D device and process simulator. As a result of modeling, we obtained 340V breakdown voltage. The channel thickness was 3um and the channel doping concentration is 1e17cm-3. And we carried out thermal characteristics, too.

  • PDF

Study on Modeling of GaN Power FET (GaN Power FET 모델링에 관한 연구)

  • Kang, Ey-Goo;Chung, Hun-Suk;Kim, Beum-Jun;Lee, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1018-1022
    • /
    • 2009
  • In this paper, we proposed GaN trench Static Induction Transistor(SIT). Because The compound semiconductor had superior thermal characteristics, GaN and SiC power devices is next generation power semiconductor devices. We carried out modeling of GaN SIT with 2-D device and process simulator. As a result of modeling, we obtained 340 V breakdown voltage. The channel thickness was 3 urn and the channel doping concentration is $1e17\;cm^{-3}$. And we carried out thermal characteristics, too.

Technical Trends in Vertical GaN Power Devices for Electric Vehicle Application (전기차 응용을 위한 수직형 GaN 전력반도체 기술 동향)

  • H.S. Lee;S.B. Bae
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.1
    • /
    • pp.36-45
    • /
    • 2023
  • The increasing demand for ultra-high efficiency of compact power conversion systems for electric vehicle applications has brought GaN power semiconductors to the fore due to their low conduction losses and fast switching speed. In particular, the development of materials and core device processes contributed to remarkable results regarding the publication of vertical GaN power devices with high breakdown voltage. This paper reviews recent advances on GaN material technology and vertical GaN power device technology. The GaN material technology covers the latest technological trends and GaN epitaxial growth technology, while the vertical GaN power device technology examines diodes, Trench FETs, JFETs, and FinFETs and reviews the vertical GaN PiN diode technology developed by ETRI.

Development of Si(110) CMOS process for monolithic integration with GaN power semiconductor (질화갈륨 전력반도체와 Si CMOS 소자의 단일기판 집적화를 위한 Si(110) CMOS 공정개발)

  • Kim, Hyung-tak
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.326-329
    • /
    • 2019
  • Gallium nitride(GaN) has been a superior candidate for the next generation power electronics. As GaN-on-Si substrate technology is mature, there has been new demand for monolithic integration of GaN technology with Si CMOS devices. In this work, (110)Si CMOS process was developed and the fabricated devices were evaluated in order to confirm the feasibility of utilizing domestic foundry facility for monolithic integration of Si CMOS and GaN power devices.

Performance Evaluation of GaN-Based Synchronous Boost Converter under Various Output Voltage, Load Current, and Switching Frequency Operations

  • Han, Di;Sarlioglu, Bulent
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1489-1498
    • /
    • 2015
  • Gallium nitride (GaN)-based power switching devices, such as high-electron-mobility transistors (HEMT), provide significant performance improvements in terms of faster switching speed, zero reverse recovery, and lower on-state resistance compared with conventional silicon (Si) metal-oxide-semiconductor field-effect transistors (MOSFET). These benefits of GaN HEMTs further lead to low loss, high switching frequency, and high power density converters. Through simulation and experimentation, this research thoroughly contributes to the understanding of performance characterization including the efficiency, loss distribution, and thermal behavior of a 160-W GaN-based synchronous boost converter under various output voltage, load current, and switching frequency operations, as compared with the state-of-the-art Si technology. Original suggestions on design considerations to optimize the GaN converter performance are also provided.

An Analysis of RF-DC Converter Circuits with GaN Schottky Barrier Diodes (GaN-SBD를 이용한 RF-DC 변환기 회로 분석)

  • Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.68-71
    • /
    • 2021
  • In this paper, GaN-SBD devices with excellent breakdown voltage and frequency characteristics for use in high-power microwave wireless power transmission has been modeled for PSpice circuit simulation. The RF-DC conversion circuits were simulated and compared with a commercial Si-SBD device. Although the modeled GaN-SBD devices had lower RF-DC conversion efficiency compared to Si-SBD at 2.4 and 5.8 GHz, it was confirmed through PSpice circuit simulations that they can be used sufficiently according to the required application circuit in a high power situation.

Realistic Simulations on Reverse Junction Characteristics of SiC and GaN Power Semiconductor Devices

  • Wei, Guannan;Liang, Yung C.;Samudra, Ganesh S.
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.19-23
    • /
    • 2012
  • This paper presents a practical methodology for realistic simulation on reverse characteristics of Wide Bandgap (WBG) SiC and GaN p-n junctions. The adjustment on certain physic-based model parameters, such as the trap density and photo-generation for SiC junction, and impact ionization coefficients and critical field for GaN junction are described. The adjusted parameters were used in Synopsys Medici simulation to obtain a realistic p-n junction avalanche breakdown voltage. The simulation results were verified through benchmarking against independent data reported by others.