• Title/Summary/Keyword: GaN films

Search Result 276, Processing Time 0.028 seconds

Comparison of growth and properties of GaN with various AlN buffer layers on Si (111) substrate (Si (111) 기판 위에 다양한 AIN 완충층을 이용한 GaN 성장과 특성 비교)

  • 신희연;이정욱;정성훈;유지범;양철웅
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.1
    • /
    • pp.50-58
    • /
    • 2002
  • The growth of GaN films on Si substrate has many advantages in that Si is less expensive than sapphire substrate and that integration of GaN-based devices with Si substrate is easier The difference of lattice constant and thermal expansion coefficient between GaN and Si is larger than those between GaN and sapphire. However, which results in many defects into the grown GaN. In order to obtain high duality GaN films on Si substrate, we need to reduce defects using the buffer layer such as AlN. In this study, we prepared three types of AlN buffer layer with various crystallinity on Si (111) substrate using MOCVD, Sputtering and MOMBE methods. GaN was grown by MOCVD on three types of AlN/Si substrate. Using TEM and XRD, we carried out comparative investigation of growth and properties of GaN deposited on the various AlN buffers by characterizing lattice coherency, crystallinity, growth orientation and defects formed (voids, stacking faults, dislocations, etc). It is found that the crystallinity of AlN buffer layer has strong effects on growth of GaN. The AlN buffer layers grown by MOCVD and MOMBE showed the reduction of out-of-plane misorientation of GaN at the initial growth stage.

A TEM Study on Growth Characteristics of GaN on Si(111) Substrate using MOCVD (Si(111) 기판 위에 MOCVD 법으로 성장시킨 GaN의 성장 특성에 관한 TEM 분석)

  • 신희연;정성훈;유지범;서수정;양철웅
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.135-140
    • /
    • 2003
  • The difference in lattice parameter and thermal expansion coefficient between GaN and Si which results in many defects into the grown GaN is larger than that between GaN and sapphire. In order to obtain high quality GaN films on Si substrate, it is essential to understand growth characteristics of GaN. In this study, GaN layers were grown on Si(111) substrates by MOCVD at three different GaN growth temperatures ($900^{\circ}C$, $1,000^{\circ}C$ and $1,100^{\circ}C$), using AlN and LT-GaN buffer layers. Using TEM, we carried out the comparative investigation of growth characteristics of GaN by characterizing lattice coherency, crystallinity, orientation relationship and defects formed (transition region, stacking fault, dislocation, etc). The localized region with high defect density was formed due to the lattice mismatch between AlN buffer layer and GaN. As the growth temperature of GaN increases, the defect density and surface roughness of GaN are decreased. In the case of GaN grown at $1,100^{\circ}$, growth thickness is decreased, and columns with out-plane misorientation are formed.

Development of Atomic Nitrogen Source Based on a Dielectric Barrier Discharge and Low Temperature Growth GaN (유전체장벽방전에 의한 질소함유 활성종의 개발 및 저온 GaN 박막 성장)

  • Kim, Joo-Sung;Byun, Dong-Jin;Kim, Jin-Sang;Kum, Dong-Wha
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1216-1221
    • /
    • 1999
  • GaN films were deposited on sapphire [$Al_2O_3(0001)$] substrates at relatively low temperature by MOCVD using N-atom source based on a Dielectric Barrier Discharged method. Ammonia gas($NH_3$is commonly used as an N-source to grow GaN films in conventional MOCVD process, and heating to high temperature is required to provide sufficient dissociation of $NH_3$. We used a dielectric barrier discharge method instead of $NH_3$ to grow GaN film relatively low temperature. DBD is a type of discharge, which have at least one dielectric material as a barrier between electrode. DBD is a type of controlled microarc that can be operated at relatively high gas pressure. Crystallinity and surface morphology depend on growth temperature and buffer layer growth. With the DBD-MOCVD method, wurtzite GaN which is dominated by the (0001) reflection was successfully grown on sapphire substrate even at $700^{\circ}C$.

  • PDF

Study on the Growth of GaN Film by GAIVBE Technique and Its Applications (GAIVBE 기법에 의한 GaN 박막의 형성과 그 활용성에 관한 연구)

  • Kang, Ho-Cheol;Kang, Ey-Goo;Lee, Jong-Suk;Sung, Man-Young;Park, Sung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1907-1909
    • /
    • 1999
  • In this paper, we report a high quality GaN films with high hole concentrations and low resistivities without post growth treatment using a GAIVBE system equipped with a home-made inductively coupled RF plasma source. The room temperature hole concentrations obtained were $5{\times}10^{17}{\sim}1.6{\times}10^{19}cm^{-3}$, and the mobilities were $2.5{\sim}8cm^2/Vs$. Also we have grown high quality n-type GaN films with the range of electron concentrations of $1.4{\times}10^{17}{\sim}4.7{\times}10^{19}cm^{-3}$ and the mobilities of $180{\sim}410cm^2/Vs$.

  • PDF

Characterization of GaN thick layer grown by the HVPE: Comparison of horizontal with vertical growth

  • Lai, Van Thi Ha;Jung, Jin-Huyn;Oh, Dong-Keun;Choi, Bong-Geun;Eun, Jong-Won;Lim, Jee-Hun;Park, Ji-Eun;Lee, Seong-Kuk;Yi, Sung;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.3
    • /
    • pp.101-104
    • /
    • 2008
  • GaN films were grown on the vertical and horizontal reactors by the hydride vapour phase epitaxy (HVPE). The structural and optical characteristics of the GaN films were investigated depending on the reactor-type. GaN epilayers were characterized by double crystal X-ray diffraction (DC-XRD), transmission electron microscopy (TEM) and photoluminescence (PL). Surface defects of two kinds of the GaN films were revealed by the wet chemical etching method, using $H_3PO_4$ acid at $200^{\circ}C$ for 8 minutes. Hexagonal etch pits were analyzed by optical microscopy and SEM. Etch pit densities were calculated to be approximately $1.4{\times}10^7$ and $1.2{\times}10^6\;cm^{-2}$ for GaN layers grown on horizontal and vertical reactors, respectively. Those results show GaN grown in the vertical reactor having a better quality of optical properties and crystallinity than that in the horizontal reactor.

Polarity of freestanding GaN grown by hydride vapor phase epitaxy

  • Lee, Kyoyeol;Auh, Keun-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.3
    • /
    • pp.106-111
    • /
    • 2001
  • The freestanding GaN substrates were grown by hydride vapor phase epitaxy (HVPE) on (0001) sapphire substrate and prepared by using laser induced lift-off. After a mechanical polishing on both Ga and N-surfaces of GaN films with 100$\mu\textrm{m}$ thick, their polarities have been investigated by using chemical etching in phosphoric acid solution, 3 dimensional surface profiler and Auger electron spectroscopy (AES). The composition of the GaN film measured by AES indicted that Ga and N terminated surfaces have the different N/Ga peak ratio of 0.74 and 0.97, respectively. Ga-face and N-face of GaN revealed quite different chemical properties: the polar surfaces corresponding to (0001) plane are resistant to a phosphoric acid etching whereas N-polar surfaces corresponding to(0001) are chemically active.

  • PDF

Chemical Vapor Deposition of β-LiGaO2 Films on Si(100) Using a Novel Single Precursor

  • Sung, Myung M.;Kim, Chang G.;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.480-484
    • /
    • 2004
  • $LiGaO_2$ films have been grown on Si (100) substrates using a new single precursor $[Li(OCH_2CH_2OCH_3)_2-Ga(CH_3)_2]_2$ under high vacuum conditions $(5{\times}10^{-6}Torr)$. The $[Li(OCH_2CH_2OCH_3)_2Ga(CH_3)_2]_2$ was synthe-sized and characterized by using spectroscopic methods and single-crystal X-ray diffraction analysis. The chemical composition, crystalline structure, and morphology of the deposited films were investigated by X-ray photoelectron spectroscopy, X-ray diffraction, and scanning electron microscopy. The results show that polycrystalline $LiGaO_2$ films preferentially oriented in the [010] direction can be deposited on Si (100) at 500-550$^{\circ}C$ by metal organic chemical vapor deposition (MOCVD). The single precursor $[LiOCH_2CH_2OCH_3)_2-Ga(CH_3)_2]_2$ has been found suitable for chemical vapor deposition of $LiGaO_2$ thin films on Si substrates.

The Characteristics of $GaAs_{0.35}P_{0.65}$ Epitaxial Layer According to in-situ doping of $NH_3$ gas (In-situ $NH_3$ doping에 따른 $GaAs_{0.35}P_{0.65}$ 에피막의 특성)

  • Lee, Eun-Cheol;Lee, Cheol-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1249-1251
    • /
    • 1998
  • We have studied the properties of $GaAs_{0.35}P_{0.65}$ epitaxial films on the GaP according to doping of $NH_3$ gas using VPE method by CVD. The efficiency of $GaAs_{0.35}P_{0.65}$ epitaxial films found to be greatly enhanced by the according of nitrogen doping. The diodes were fabricated by means of Zn diffusion into vapor grown $GaAs_{0.35}P_{0.65}$ epitaxial films doped with N and Te. The effects of nitrogen doping on carrier density of epitaxial films, PL wavelength and the power out, forward voltage of diodes are discussed. In the end, The effect of electrical and optical properties is influenced by the deep level and deep level density of nitrogen doping.

  • PDF

Catchodoluminescence Study of GaN Films Grown by Low-Pressure Metalorganic Chemical Vapor Deposition (저압 유기 금속 화학 증착법으로 성장시킨 GaN박막의 캐소드루미네슨스에 대한 연구)

  • 홍창희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.5
    • /
    • pp.63-68
    • /
    • 1999
  • In this paper, the correlation between the growth mechanism and the optical property in GaN films grown by low-pressure metalorganic chemical vapor deposition was characterized using room temperature cathodoluminescence spectroscopy. An intense near band-edge emission, 364nm, and deep-level emission, 550nm, were observed. The intensity of 364nm peak was increased with increasing the beam current. Also the peak position of 364nm emission was red-shifted and the intensity of 550nm peak was increased with increasing the accelerating voltage. It shows that the deep-level emission is strongly associated with crystalline defects in the GaN at early stage. The relationship between the microstructure and the deep level emission observed by scanning electron microscope images and cathodoluminescence spectra was carefully analyzed.

  • PDF

Effects of Doping Concentration on the Properties of Ga-doped ZnO Thin Films Prepared by RF Magnetron Sputtering (Ga의 도핑농도에 따른 ZnO 박막의 특성)

  • Kim, Hyoung Min;Ma, Dae Young;Park, Ki Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.984-989
    • /
    • 2012
  • We have investigated the structural, electrical and optical properties of Ga-doped ZnO (GZO) thin films prepared by RF magnetron sputtering with laboratory-made ZnO targets containing 1, 3, 5, 7 wt% of $Ga_2O_3$ powder as a doping source. The GZO thin films show the typical crystallographic orientation with c-axis regardless of $Ga_2O_3$ content in the targets. The $3,000{\AA}$ thick GZO thin films with the lowest resistivity of $7{\times}10^{-4}{\Omega}{\cdot}cm$ are obtained by using the GZO ($Ga_2O_3$= 5 wt%) target. Optical transmittance of all films shows higher than 80% at the visible region. The optical energy band gap for GZO films increases as the carrier concentration ($n_e$) in the film increases.