• 제목/요약/키워드: GaAsN

검색결과 1,123건 처리시간 0.033초

GaAs 기판위에 성장된 단결정 AlAs층의 선택적 산화 및 XPS (X-ray photonelectron spectroscopy) 분석 (Selective Oxidation of Single Crystalline AlAs layer on GaAs substrate and XPS(X-ray photoelectron spectroscopy) Analysis)

  • 이석헌;이용수;태흥식;이용현;이정희
    • 센서학회지
    • /
    • 제5권5호
    • /
    • pp.79-84
    • /
    • 1996
  • $n^{+}$형 GaAs 기판위에 MBE로 $1\;{\mu}m$ 두께의 GaAs층과 AlAs층 및 GaAs cap 단결정층을 차례로 성장시켰다. AlAs/GaAs epi층을 $400^{\circ}C$에서 각각 2시간 및 3시간동안 $N_{2}$로 bubbled된 $H_{2}O$ 수증기(水蒸氣)($95^{\circ}C$)에서 산화시켰다. 산화시간에 따른 산화막의 XPS 분석결과, 작은 양의 $As_{2}O_{3}$ 및 AlAS 그리고 원소형 As들이 2시간동안 산화된 시편에서 발견되었다. 그러나 3시간동안 산화시킨 후에는, 2시간동안 산화시켰을 때 산화막내에 존재하던 소량의 As 산화물과 As 원자들은 발견되지 않았다. 따라서 As-grown된 AlAs/GaAs epi층은 3시간동안 $400^{\circ}C$의 산화온도에서 선택적으로 $Al_{2}O_{3}/GaAs$으로 변화되었다. 그러므로 산화온도 및 산화시간은 AlAs/GaAs 계면에서 결함이 없는 표면을 형성하고 기판쪽으로 산화가 진행되는 것을 멈추기 위해서는 매우 결정적으로 작용하는 것으로 조사되었다.

  • PDF

A study of ohmic contacts to p-GaN

  • 장자순;장인식;성태연;장홍규;박성주
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1998년도 제14회 학술발표회 논문개요집
    • /
    • pp.103-104
    • /
    • 1998
  • GaN is a ppromising materials fot applications in the blue/ultraviolet (UV) light emitting diodes (LEDs)[1] and laser diodes (LDs) [2] High quality ohmic contacts are very critical to these applications since the qualities of ohmic contact system pplay an impportant roles in the high efficient device opperations. For the n-GaN there have been many repports about ohmic contacts and the sppecific contact resistance were as low as from 10-8$\Omega$cm2 However for the ohmic contacts on pp-GaN much fewer study were repported and the sppecific contact resistivity was much lower than of n-GaN. In this ppapper we repport a new Ni/ppt/Au metallization scheme and discuss the mechanism of ohmic formation

  • PDF

위성체의 동력원으로서의 GaAs 태양전지 (GaAs solar cells for a satellite application)

  • 이승기;한민구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.620-626
    • /
    • 1988
  • GaAs solar cells may be the most attractive and efficient power source of a satellite. GaAs is more radiation tolerant and less temperature sensitive than widely used silicon. $Al_{x}$ Ga$_{1-x}$ As/GaAs solar cells have been designed and fabricated by Liquid Phase Epitaxial method. GaAs solar cells, of which structure is about 0.2 .mu.m p$^{+}$ - window layer, 0.6-1.O .mu.m Ge-doped p-layer. 3.mu.m n-GaAs layer and n$^{+}$ - buffer layer, have been characterized as a function of operating temperature from 25 .deg.C to 130 .deg.C. Open circuit voltage decreases linearly with increasing temperature by 1.4-1.51 mV/ .deg.C while degradation of silicon solar cells is about 2.2-2.5 mV/ .deg.C, short circuit current does not increase much with increasing temperature. Relative efficiency decreases with increasing of temperature by about 0.21-0.29 %/ .deg.C. Efficiency degradation of silicon solar cells with temperature is known to be about 0.5%/ .deg.C and our results show GaAs solar cells may be an excellent candidate for concentrated solar cells.ells.

  • PDF

Contact Resistance Reduction between Ni-InGaAs and n-InGaAs via Rapid Thermal Annealing in Hydrogen Atmosphere

  • Lee, Jeongchan;Li, Meng;Kim, Jeyoung;Shin, Geonho;Lee, Ga-won;Oh, Jungwoo;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권2호
    • /
    • pp.283-287
    • /
    • 2017
  • Recently, Ni-InGaAs has been required for high-performance III-V MOSFETs as a promising self-aligned material for doped source/drain region. As downscaling of device proceeds, reduction of contact resistance ($R_c$) between Ni-InGaAs and n-InGaAs has become a challenge for higher performance of MOSFETs. In this paper, we compared three types of sample, vacuum, 2% $H_2$ and 4% $H_2$ annealing condition in rapid thermal annealing (RTA) step, to verify the reduction of $R_c$ at Ni-InGaAs/n-InGaAs interface. Current-voltage (I-V) characteristic of metal-semiconductor contact indicated the lowest $R_c$ in 4% $H_2$ sample, that is, higher current for 4% $H_2$ sample than other samples. The result of this work could be useful for performance improvement of InGaAs n-MOSFETs.

직류전위차법을 이용한 점용접부의 피로수명 평가 (Fatigue Life Evaluation of Spot Weldment Using DCPDM)

  • 유효선;이송인;권일현;안병국
    • Journal of Welding and Joining
    • /
    • 제19권1호
    • /
    • pp.58-64
    • /
    • 2001
  • The initiation and propagation lives of fatigue crack were studied for spot weldments composed of cold rolled steel plates(SPC$\times$SPC) and galvanized steel plates(GA$\times$GA) using DC potential drop method(DCPDM). Through the various test results, it was known that the fatigue crack initiation and propagation behaviors in all specimens could be definitely detected by DCPDM. The fatigue crack initiation life( $N_{i}$) detected by DCPDM in SPC$\times$SPC and GA$\times$GA spot weldments increased as the welding current and the nugget diameter( $N_{d}$) increased. The fatigue crack propagation life($\Delta$ $N_{f-i}$) declined as the difference of $N_{i}$ and the fatigue fracture life( $N_{f}$) also increased according to the decrease of fatigue load, $\Delta$P and the increase of nugget diameter. In the same spot weldments, the increase of nugget diameter came to increase fatigue crack propagation life owing to a decrease of stress concentration in front of nugget, especially the increasing extent for GA$\times$GA spot weldment was very high. In the welding current 6kA, $N_{f}$ for GA$\times$GA spot weldment decreased more than that of SPC$\times$SPC specimen due to zinc layer coated in steel plate and undersized nugget diameter. On the other hand, in 8kA and 10kA, the GA$\times$GA spot weldment showed higher $N_{f}$ in spite of lower $N_{i}$, than that of SPC$\times$SPC specimen except 3,000N fatigue load.ue load. load.d.

  • PDF

GaN 기반 LED구조의 p-GaN층 성장온도에 따른 광학적, 결정학적 특성 평가 (Optical and microstructural behaviors in the GaN-based LEDs structures with the p-GaN layers grown at different growth temperatures)

  • 공보현;김동찬;김영이;한원석;안철현;최미경;조형균;이주영;김홍승
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.144-144
    • /
    • 2008
  • Blue light emitting diode structures consisting of the InGaN/GaN multiple quantum wells were grown by metalorganic chemical vapor deposition at different growth temperatures for the p-GaN contact layers and the influence of growth temperature on the emission and microstructural properties was investigated. The I-V and electroluminescence measurements showed that the sample with a p-GaN layer grown at $1084^{\circ}C$ had a lower electrical turn-on voltage and series resistance, andenhanced output power despite the low photoluminescence intensity. Transmission electron microscopy (TEM) revealed that the intense electro luminescence was due to the formation of a p-GaN layer with an even distribution of Mg dopants, which was confirmed by TEM image contrast and strain evaluations. These results suggest that the growth temperature should be optimized carefully to ensurethe homogeneous distribution of Mg as well as the total Mg contents in the growth of the p-type layer.

  • PDF

인듐량에 따른 InxGaN1-x 박막의 에너지밴드갭 변화 (Energy-band-gap Variation of InxGaN1-x Thin Films with Indium Composition)

  • 박기철;마대영
    • 한국전기전자재료학회논문지
    • /
    • 제22권8호
    • /
    • pp.677-681
    • /
    • 2009
  • $In_xGa_{1-x}N$ alloys with 20-nm-thickness were deposited onto Mg:GaN/AlN/SiC substrates by MOCVD at $800\;^{\circ}C$. TMGa, TMIn and $NH_3$ were used as the precursor of gallium, indium and nitrogen, respectively. The mole ratio of indium in $In_xGa_{1-x}N$ films varied between 0 and 0.2. The energy-band-gaps of the films were obtained from the photoluminescence and cathodoluminescence peaks. The mole ratios of $In_xGa_{1-x}N$ films were calculated by applying Vegard's law to XRD results. The energy-band-gap versus indium composition plot for $In_xGa_{1-x}N$ alloys were well fit with a bowing parameter of 2.27.

Molecular Orbital Calculations for the Formation of GaN Layers on Ultra-thin AlN/6H-SiC Surface Using Alternating Pulsative Supply of Gaseous Trimethyl Gallium (TMG) and NH$_3$

  • 성시열;황진수
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권2호
    • /
    • pp.154-158
    • /
    • 2001
  • The steps for the generation of very thin GaN films on ultrathin AlN/6H-SiC surface by alternating a pulsative supply (APS) of trimethyl gallium and NH3 gases have been examined by ASED-MO calculations. We postulate that the gallium cul ster was formed with the evaporation of CH4 gases via the decomposition of trimethyl gallium (TMG), dimethyl gallium (DMG), and monomethyl galluim (MMG). During the injection of NH3 gas into the reactor, the atomic hydrogens were produced from the thermal decomposition of NH3 molecule. These hydrogen gases activated the Ga-C bond cleavage. An energetically stable GaN nucleation site was formed via nitrogen incorporation into the layer of gallium cluster. The nitrogen atoms produced from the thermal degradation of NH3 were expected to incorporate into the edge of the gallium cluster since the galliums bind weakly to each other (0.19 eV). The structure was stabilized by 2.08 eV, as an adsorbed N atom incorporated into a tetrahedral site of the Ga cluster. This suggests that the adhesion of the initial layer can be reinforced by the incorporation of nitrogen atom through the formation of large grain boundary GaN crystals at the early stage of GaN film growth.

Improvement in LED structure for enhanced light-emission

  • Park, Seong-Ju
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.21-21
    • /
    • 2003
  • To increase the light-emission efficiency of LED, we increased the internal and external quantum efficiency by suppressing the defect formation in the quantum well and by increasing the light extraction efficiency in LED, respectively. First, the internal quantum efficiency was improved by investigating the effect of a low temperature (LT) grown p-GaN layer on the In$\sub$0.25/GaN/GaN MQW in green LED. The properties of p-GaN was optimized at a low growth temperature of 900oC. A green LED using the optimized LT p-type GaN clearly showed the elimination of blue-shift which is originated by the MQW damage due to the high temperature growth process. This result was attributed to the suppression of indium inter-diffusion in MQW layer as evidenced by XRD and HR-TEM analysis. Secondly, we improved the light-extraction efficiency of LED. In spite of high internal quantum efficiency of GaN-based LED, the external quantum efficiency is still low due to the total internal reflection of the light at the semiconductor-air interface. To improve the probability of escaping the photons outside from the LED structure, we fabricated nano-sized cavities on a p-GaN surface utilizing Pt self-assembled metal clusters as an etch mask. Electroluminescence measurement showed that the relative optical output power was increased up to 80% compared to that of LED without nano-sized cavities. I-V measurement also showed that the electrical performance was improved. The enhanced LED performance was attributed to the enhancement of light escaping probability and the decrease of resistance due to the increase in contact area.

  • PDF

Optical properties of a-plane InGaN/GaN multi-quantum wells with green emission

  • Song, Hoo-Young;Kim, Eun-Kyu;Lee, Sung-Ho;Hwang, Sung-Min
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.172-172
    • /
    • 2010
  • In the area of optoelectronic devices based on GaN and related ternary compounds, the two-dimensional system like as quantum wells (QWs) has been investigated as an effective structure for improving the light-emitting efficiency. Generally, the quantum well active regions in III-nitride light-emitting diodes grown on conventional c-plane sapphire substrates have critical problems given by the quantum confined Stark effect (QCSE) due to the effects of strong piezoelectric and spontaneous polarizations. However, the QWs grown on nonpolar templates are free from the QCSE since the polar-axis lies within the growth plane of the template. Also the unique characteristic of linear polarized light emission from nonpolar QW structures is attracting attentions because it is proper to the application of back-light units of liquid crystal display. In this study, we characterized optical properties of the a-plane InGaN/GaN QW structures by temperature-dependent photoluminescence (TDPL) measurements. From the photoluminescence (PL) spectrum measured at 300 K, green emission centered at 520 nm was observed for the QW region. Since indium incorporation on nonpolar QWs is lower than that on c-plane, this high indium-doping on a-plane InGaN QWs is not common. Therefore, the effect of high indium composition on optical properties in a-plane InGaN QWs will be extensively studied.

  • PDF